Бесщеточные двигатели постоянного тока. Бесколлекторный двигатель постоянного тока Бесколлекторный синхронный двигатель

Работа бесщеточного электродвигателя основывается на электрических приводах, создающих магнитное вращающееся поле. В настоящее время существует несколько типов устройств, имеющих различные характеристики. С развитием технологий и использованием новых материалов, отличающихся высокой коэрцитивной силой и достаточным уровнем магнитного насыщения, стало возможным получение сильного магнитного поля и, как следствие, вентильных конструкций нового вида, в которых отсутствует обмотка на роторных элементах или стартере. Обширное распространение переключателей полупроводникового типа с высокой мощностью и приемлемой стоимостью ускорило создание подобных конструкций, облегчило исполнение и избавило от множества сложностей с коммутацией.

Принцип работы

Увеличение надежности, уменьшение цены и более простое изготовление обеспечивается отсутствием механических коммутационных элементов, обмотки ротора и постоянных магнитов. При этом повышение результативности возможно благодаря уменьшению потерь трения в коллекторной системе. Бесщеточный двигатель может функционировать на переменном либо непрерывном токе. Последний вариант отличается заметным сходством с Его характерной особенностью является формирование магнитного вращающегося поля и применение импульсного тока. В его основе присутствует электронный коммутатор, из-за чего повышается сложность конструкции.

Вычисление положения

Генерирование импульсов происходит в управляющей системе после сигнала, отражающего положение ротора. От стремительности вращения мотора напрямую зависит степень напряжения и подачи. Датчик в стартере определяет положение ротора и подает электрический сигнал. Вместе с магнитными полюсами, проходящими рядом с датчиком, меняется амплитуда сигнала. Также существуют бездатчиковые методики установления положения, к их числу относятся точки прохождения тока и преобразователи. ШИМ на входящих зажимах обеспечивают сохранение переменного уровня напряжения и управление мощностью.

Для ротора с неизменными магнитами подведение тока необязательно, благодаря чему отсутствуют потери в обмотке ротора. Бесщеточный двигатель для шуруповерта отличается низким уровнем инерции, обеспечиваемым отсутствием обмоток и механизированного коллектора. Таким образом появилась возможность использования на высоких скоростях без искрения и электромагнитного шума. Высокие значения тока и упрощение рассеивания тепла достигаются размещением нагревающих цепей на статоре. Стоит также отметить наличие электронного встроенного блока на некоторых моделях.

Магнитные элементы

Расположение магнитов может быть различным в соответствии с размерами двигателя, к примеру, на полюсах или по всему ротору. Создание качественных магнитов с большей мощностью возможно благодаря использованию неодима в сочетании с бором и железом. Несмотря на высокие показатели эксплуатации, бесщеточный двигатель для шуруповертас постоянными магнитами обладает некоторыми недостатками, в их числе утрата магнитных характеристик при высоких температурах. Но они отличаются большей эффективностью и отсутствием потерь по сравнению с машинами, в конструкции которых имеются обмотки.

Импульсы инвертора определяют механизма. При неизменной питающей частоте работа двигателя осуществляется с постоянной скоростью в разомкнутой системе. Соответственно, скорость вращения меняется в зависимости от уровня питающей частоты.

Характеристики

Работает в установленных режимах и имеет функционал щеточного аналога, скорость которого зависит от приложенного напряжения. Механизм обладает множеством достоинств:

  • отсутствие изменений при намагничивании и утечке тока;
  • соответствие скорости вращения и самого вращающего момента;
  • скорость не ограничивается влияющей на коллектор и роторную электрообмотку;
  • нет необходимости в коммутаторе и обмотке возбуждения;
  • используемые магниты отличаются небольшим весом и компактными размерами;
  • высокий момент силы;
  • энергонасыщенность и эффективность.

Использование

Постоянного тока с постоянными магнитами встречается в основном в устройствах с мощностью в пределах 5 кВт. В более мощной аппаратуре их применение нерационально. Также стоит отметить, что магниты в двигателях данного типа отличаются особой чувствительностью к высоким температурам и сильным полям. Индукционные и щеточные варианты лишены таких недостатков. Двигатели активно используются в автомобильных приводах благодаря отсутствию трения в коллекторе. Среди особенностей нужно выделить равномерность вращающего момента и тока, что обеспечивает снижение акустического шума.

Отличительные особенности:

  • Общие сведения о БКЭПТ
  • Использует контроллер силового каскада
  • Пример программного кода

Введение

В данных рекомендациях по применению описывается, как реализовать устройство управления бесколлекторным электродвигателем постоянного тока (БКЭПТ) с использованием датчиков положения на основе AVR-микроконтроллера AT90PWM3 .

Высокопроизводительное AVR-ядро микроконтроллера, которое содержит контроллер силового каскада, позволяет реализовать устройство управления высокоскоростным бесколлекторным электродвигателем постоянного тока.

В данном документе дается короткое описание принципа действия бесколлекторного электродвигателя постоянного тока, а в деталях рассматривается управление БКЭПТ в сенсорном режиме, а также приводится описание принципиальной схемы опорной разработки ATAVRMC100 , на которой основаны данные рекомендации по применению.

Обсуждается также программная реализация с программно-реализованным контуром управления на основе ПИД-регулятора. Для управления процессом коммутации подразумевается использование только датчиков положения на основе эффекте Холла.

Принцип действия

Области применения БКЭПТ непрерывно увеличиваются, что связано с рядом их преимуществ:

  1. Отсутствие коллекторного узла, что упрощает или даже вообще исключает техническое обслуживание.
  2. Генерация более низкого уровня акустического и электрического шума по сравнению с универсальными коллекторными двигателями постоянного тока.
  3. Возможность работы в опасных средах (с воспламеняемыми продуктами).
  4. Хорошее соотношение массогабаритных характеристик и мощности...

Двигатели такого типа характеризуются небольшой инерционностью ротора, т.к. обмотки расположены на статоре. Коммутация управляется электроникой. Моменты коммутации определяются либо по информации от датчиков положения, либо путем измерения обратной э.д.с., генерируемой обмотками.

При управлении с использованием датчиков БКЭПТ состоит, как правило, из трех основных частей: статор, ротор и датчики Холла.

Статор классического трехфазного БКЭПТ содержит три обмотки. Во многих двигателях обмотки разделяются на несколько секций, что позволяет уменьшить пульсации вращающего момента.

На рисунке 1 показана электрическая схема замещения статора. Он состоит из трех обмоток, каждая из которых содержит три последовательно включенных элемента: индуктивность, сопротивление и обратная э.д.с.

Рисунок 1. Электрическая схема замещения статора (три фазы, три обмотки)

Ротор БКЭПТ состоит из четного числа постоянных магнитов. Количество магнитных полюсов в роторе также оказывает влияние на размер шага вращения и пульсации вращающего момента. Чем большее количество полюсов, тем меньше размер шага вращения и меньше пульсации вращающего момента. Могут использоваться постоянные магниты с 1..5 парами полюсов. В некоторых случаях число пар полюсов увеличивается до 8 (рисунок 2).


Рисунок 2. Статор и ротор трехфазного, трехобмоточного БКЭПТ

Обмотки установлены стационарно, а магнит вращается. Ротор БКЭПТ характеризуется более легким весом относительно ротора обычного универсального двигателя постоянного тока, у которого обмотки расположены на роторе.

Датчик Холла

Для оценки положения ротора в корпус двигателя встраиваются три датчика Холла. Датчики установлены под углом 120° по отношению друг к другу. С помощью данных датчиков возможно выполнить 6 различных переключений.

Коммутация фаз зависит от состояния датчиков Холла.

Подача напряжений питания на обмотки изменяется после изменения состояний выходов датчиков Холла. При правильном выполнении синхронизированной коммутации вращающий момент остается приблизительно постоянным и высоким.


Рисунок 3. Сигналы датчиков Холла в процессе вращения

Коммутация фаз

В целях упрощенного описания работы трехфазного БКЭПТ рассмотрим только его версию с тремя обмотками. Как было показано ранее, коммутация фаз зависит от выходных значений датчиков Холла. При корректной подаче напряжения на обмотки двигателя создается магнитное поле и инициируется вращение. Наиболее распространенным и простым способом управления коммутацией, используемый для управления БКЭПТ, является схема включения-отключения, когда обмотка либо проводит ток, либо нет. В один момент времени могут быть запитаны только две обмотки, а третья остается отключенной. Подключение обмоток к шинам питания вызывает протекание электрического тока. Данный способ называется трапецеидальной коммутацией или блочной коммутацией.

Для управления БКЭПТ используется силовой каскад, состоящих из 3 полумостов. Схема силового каскада показана на рисунке 4.


Рисунок 4. Силовой каскад

По считанным значениям датчиков Холла определяется, какие ключи должны быть замкнутыми.

Таблица 1. Коммутация ключей по часовой стрелке

У двигателей с несколькими полями электрическое вращение не соответствует механическому вращению. Например, у четырехполюсных БКЭПТ четыре цикла электрического вращения соответствуют одному механическому вращению.

От силы магнитного поля зависит мощность и частота вращения двигателя. Регулировать частоту вращения и вращающий момент двигателя можно за счет изменения тока через обмотки. Наиболее распространенный способ управления током через обмотки является управление средним током. Для этого используется широтно-импульсная модуляция (ШИМ), рабочий цикл которой определяет среднее значение напряжения на обмотках, а, следовательно, и среднее значение тока и, как следствие, частоту вращения. Скорость может регулироваться при частотах от 20 до 60 кГц.

Вращающееся поле трехфазного, трехобмоточного БКЭПТ показано на рисунке 5.


Рисунок 5. Ступени коммутации и вращающееся поле

Процесс коммутации создает вращающееся поле. На ступени 1 фаза А подключается к положительной шине питания ключом SW1, фаза В подключается к общему с помощью ключа SW4, а фаза С остается неподключенной. Фазами А и В создаются два вектора магнитного потока (показаны красной и синий стрелками, соответственно), а сумма этих двух векторов дает вектор магнитного потока статора (зеленая стрелка). После этого ротор пытается следовать магнитному потоку. Как только ротор достигает некоторого положения, в котором изменяется состояние датчиков Холла со значения "010" на "011", выполняется соответствующим образом переключение обмоток двигателя: фаза В остается незапитанной, а фаза С подключается к общему. Это приводит к генерации нового вектора магнитного потока статора (ступень 2).

Если следовать схеме коммутации, показанной на рисунке 3 и в таблице 1, то получим шесть различных векторов магнитного потока, соответствующих шести ступеням коммутации. Шесть ступеней соответствуют одному обороту ротора.

Стартовый набор ATAVRMC100

Принципиальная электрическая схема представлена на рисунках 21, 22, 23 и 24 в конце документа.

Программа содержит контур управления скоростью с помощью ПИД-регулятора. Такой регулятор состоит из трех звеньев, каждый из которых характеризуется собственным коэффициентом передачи: Kп, Kи и Kд.

Кп - коэффициент передачи пропорционального звена, Kи - коэффициент передачи интегрирующего звена и Kд - коэффициент передачи дифференцирующего звена. Отклонение заданной скорости от фактической (на рисунке 6 называется "сигнал рассогласования") обрабатывается каждым из звеньев. Результат данных операций складывается и подается на двигатель для получения требуемой частоты вращения (см. рисунок 6).


Рисунок 6. Структурная схема ПИД-регулятора

Коэффициент Кп влияет на длительность переходного процесса, коэффициент Ки позволяет подавить статические ошибки, а Кд используется, в частности, для стабилизации положения (см. описание контура управления в архиве с программным обеспечением для изменения коэффициентов).

Описание аппаратной части

Как показано на рисунке 7 микроконтроллер содержит 3 контроллера силового каскада (PSC). Каждый PSC можно рассматривать как широтно-импульсный модулятор (ШИМ) с двумя выходными сигналами. Во избежание возникновения сквозного тока PSC поддерживает возможность управления задержкой неперекрытия силовых ключей (см. документацию на AT90PWM3 для более детального изучения работы PSC, а также рисунок 9).

Аварийный вход (Over_Current, токовая перегрузка) связан с PSCIN. Аварийный вход разрешает микроконтроллеру отключить все выходы PSC.


Рисунок 7. Аппаратная реализация

Для измерения тока можно использовать два дифференциальных канала с программируемым усилительным каскадом (Ку=5, 10, 20 или 40). После выбора коэффициента усиления необходимо подобрать номинал шунтового резистора для наиболее полного охвата диапазона преобразования.

Сигнал Over_Current формируется внешним компаратором. Пороговое напряжение компаратора можно регулироваться с помощью внутреннего ЦАП.

Переключение фаз должно выполняться в соответствии со значением на выходах датчиков Холла. ДХ_A, ДХ_B и ДХ_C подключаются к входам источников внешних прерываний или к трем внутренним компараторам. Компараторы генерируют такой же тип прерываний, что и внешние прерывания. На рисунке 8 показано, как используются порты ввода-вывода в стартовом наборе.


Рисунок 8. Использование портов ввода-вывода микроконтроллера (корпус SO32)

VMOT (Vдв.) и VMOT_Half (1/2 Vдв.) реализованы, но не используются. Они могут использоваться для получения информации о напряжении питания двигателя.

Выходы H_x и L_x используются для управления силовым мостом. Как было сказано выше, они зависят от контроллера силового каскада (PSC), который генерирует ШИМ-сигналы. В таком применении рекомендуется использовать режим с выравниванием по центру (см. рисунок 9), когда регистр OCR0RA используется для синхронизации запуска преобразования АЦП для измерения тока.


Рисунок 9. Осциллограммы сигналов PSCn0 и PSCn1 в режиме с выравниванием по центру

  • Время вкл. 0 = 2 * OCRnSA * 1/Fclkpsc
  • Время вкл. 1 = 2* (OCRnRB - OCRnSB + 1) * 1/Fclkpsc
  • Период PSC = 2 * (OCRnRB + 1) * 1/Fclkpsc

Пауза неперекрытия между PSCn0 и PSCn1:

  • |OCRnSB - OCRnSA| * 1/Fclkpsc

Блок PSC тактируется сигналов CLKPSC.

Для подачи ШИМ-сигналов в силовой каскад может использоваться один из двух способов. Первый заключается в приложении ШИМ-сигналов к верхним и нижним частям силового каскада, а второй - в приложении ШИМ-сигналов только к верхним частям.

Описание программного обеспечения

Atmel разработала библиотеки для управления БКЭПТ. Первый шаг их использования заключается в конфигурации и инициализации микроконтроллера.

Конфигурация и инициализация микроконтроллера

Для этого необходимо использовать функцию mc_init_motor(). Она вызывает функции инициализации аппаратной и программной части, а также инициализирует все параметры двигателя (направление вращения, частота вращения и останов двигателя).

Структура программной реализации

После конфигурации и инициализации микроконтроллера может быть выполнен запуск двигателя. Для управления двигателем необходимо только несколько функций. Все функции определены в mc_lib.h:

Void mc_motor_run(void) - Используется для запуска двигателя. Вызывается функция контура стабилизации для установки рабочего цикла ШИМ. После этого выполняется первая фаза коммутации. Bool mc_motor_is_running(void) - Определение состояния двигателя. Если "1", то двигатель работает, если "0", то двигатель остановлен. void mc_motor_stop(void) - Используется для остановки двигателя. void mc_set_motor_speed(U8 speed) - Установка заданной пользователем скорости. U8 mc_get_motor_speed(void) - Возвращает заданную пользователем скорость. void mc_set_motor_direction(U8 direction) - Установка направления вращения "CW" (по часовой стрелке) или "CCW" (против часовой стрелки). U8 mc_get_motor_direction(void) - Возвращает текущее направление вращения двигателя. U8 mc_set_motor_measured_speed(U8 measured_speed) - Сохранение измеренной скорости в переменной measured_speed. U8 mc_get_motor_measured_speed(void) - Возвращает измеренную скорость. void mc_set_Close_Loop(void) void mc_set_Open_Loop(void) - Конфигурация контура стабилизации: замкнутый контур или разомкнутый (см. рисунок 13).


Рисунок 10. Конфигурация AT90PWM3


Рисунок 11. Структура программного обеспечения

На рисунке 11 показаны четыре переменные mc_run_stop (пуск/стоп), mc_direction (направление), mc_cmd_speed (заданная скорость) и mc_measured_speed (измеренная скорость). Они являются основными программными переменными, доступ к которым может выполняться посредством ранее описанных пользовательских функций.

Программную реализацию можно рассматривать как черный ящик с наименованием "Управление двигателем" (рисунок 12) и несколькими входами (mc_run_stop, mc_direction, mc_cmd_speed, mc_measured_speed) и выходами (все сигналы управления силовым мостом).


Рисунок 12. Основные программные переменные

Большинство функций доступны в mc_drv.h. Только некоторые из них зависят от типа двигателя. Функции можно разделить на четыре основных класса:

  • Инициализация аппаратной части
  • void mc_init_HW(void); Инициализация аппаратной части полностью выполнена в этой функции. Здесь выполняется инициализация портов, прерываний, таймеров и контроллера силового каскада.

    Void mc_init_SW(void); Используется для инициализации программного обеспечения. Разрешает все прерывания.

    Void mc_init_port(void); Инициализация порта ввода-вывода путем задания через регистры DDRx, какие выводы функционируют как вход, а какие как выход, а также с указанием, на каких входах необходимо включить подтягивающие резисторы (через регистр PORTx).

    Void mc_init_pwm(void); Данная функция запускает ФАПЧ и устанавливает все регистры PSC в исходное состояние.

    Void mc_init_IT(void); Модифицируйте данную функцию для разрешения или запрета типов прерываний.

    Void PSC0_Init (unsigned int dt0, unsigned int ot0, unsigned int dt1, unsigned int ot1); void PSC1_Init (unsigned int dt0, unsigned int ot0, unsigned int dt1, unsigned int ot1); void PSC2_Init (unsigned int dt0, unsigned int ot0, unsigned int dt1, unsigned int ot1); PSCx_Init позволяет пользователю выбрать конфигурацию контроллера силового каскада (PSC) микроконтроллера.

  • Функции коммутации фаз U8 mc_get_hall(void); Считывание состояния датчиков Холла, соответствующее шести ступеням коммутации (HS_001, HS_010, HS_011, HS_100, HS_101, HS_110).

    Interrupt void mc_hall_a(void); _interrupt void mc_hall_b(void); _interrupt void mc_hall_c(void); Данные функции выполняются, если выявлено внешнее прерывание (изменение выхода датчиков Холла). Они позволяют выполнить коммутацию фаз и вычислить скорость.

    Void mc_duty_cycle(U8 level); Данная функция устанавливает рабочий цикл ШИМ в соответствии с конфигурацией PSC.

    Void mc_switch_commutation(U8 position); Коммутация фаз выполняется в соответствии со значением на выходах датчиков Холла и только в случае, если пользователь запустит двигатель.

  • Конфигурация времени преобразования void mc_config_sampling_period(void); Инициализация таймера 1 для генерации прерывания каждые 250 мкс. _interrupt void launch_sampling_period(void); После активизации 250 мкс-ого прерывания устанавливает флаг. Он может использоваться для управления временем преобразования.
  • Оценка скорости void mc_config_time_estimation_speed(void); Конфигурация таймера 0 для выполнения функции вычисления скорости.

    Void mc_estimation_speed(void); Данная функция вычисляет частоту вращения двигателя на основе принципа измерения периода следования импульсов датчика Холла.

    Interrupt void ovfl_timer(void); При возникновении прерывания выполняется приращение 8-разрядной переменной для реализации 16-разрядного таймера с помощью 8-разрядного таймера.

  • Измерение тока _interrupt void ADC_EOC(void); Функция ADC_EOC выполняется сразу после завершения преобразования усилителя для установки флага, который может использоваться пользователем.

    Void mc_init_current_measure(void); Данная функция инициализирует усилитель 1 для измерения тока.

    U8 mc_get_current(void); Считывание значения тока, если преобразование завершено.

    Bool mc_conversion_is_finished(void); Индицирует завершение преобразования.

    Void mc_ack_EOC(void); Сброс флага завершения преобразования.

  • Детекция токовой перегрузки void mc_set_Over_Current(U8 Level); Устанавливает порог определения токовой перегрузки. В качестве порога выступает выход ЦАП, связанный с внешним компаратором.

Контур стабилизации выбирается с помощью двух функций: разомкнутый (mc_set_Open_Loop()) или замкнутый контур (mc_set_Close_Loop()). На рисунке 13 показан программно-реализованный контур стабилизации.


Рисунок 13. Контур стабилизации

Замкнутый контур представляет собой контур стабилизации скорости на основе ПИД-регулятора.

Как было показано ранее, коэффициент Кп используется для стабилизации времени отклика двигателя. Вначале установите Ки и Кд равными 0. Для получения требуемого времени отклика двигателя необходимо подбирать значение Кп.

  • Если время отклика слишком мало, то увеличьте Кп.
  • Если время отклика быстрое, но не стабильное, то снизьте Кп.


Рисунок 14. Настройка Кп

Параметр Ки используется для подавления статической погрешности. Оставьте коэффициент Кп неизменным и установите параметр Ки.

  • Если погрешность отличается от нуля, то увеличьте Ки.
  • Если подавлению погрешности предшествовал колебательный процесс, то уменьшите Ки.


Рисунок 15. Настройка Ки

На рисунках 14 и 15 показаны примеры выбора правильных параметров регулятора Кп = 1, Ки = 0.5 и Kд = 0.

Настройка параметра Кд:

  • Если быстродействие низкое, то увеличьте Кд.
  • При нестабильности Кд необходимо снижать.

Еще одним существенным параметром является время преобразования. Его необходимо выбирать относительно времени реагирования системы. Время преобразования должно быть, по крайней мере, в два раза меньше времени отклика системы (по правилу Котельникова).

Для конфигурации времени преобразования предусмотрены две функции (обсуждались выше).

Их результат отображается в глобальной переменной g_tick, которая устанавливается каждые 250 мкс. С помощью данной переменной возможно настроить время преобразования.

ЦПУ и использование памяти

Все измерения выполняются при частоте генератора 8МГц. Они также зависят от типа двигателя (количество пар полюсов). При использовании двигателя с 5 парами полюсов частота сигнала на выходе датчика Холла в 5 раз ниже частоты вращения двигателя.

Все результаты, приведенные на рисунке 16, получены при использовании трехфазного БКЭПТ с пятью парами полюсов и максимальной частотой вращения 14000 об/мин.


Рисунок 16. Использование быстродействия микроконтроллера

В худшем случае уровень загрузки микроконтроллера около 18% с временем преобразования 80 мс и частотой вращения 14000 об/мин.

Первую оценку можно выполнить для более быстрого двигателя и с добавлением функции стабилизации тока. Время выполнения функции mc_regulation_loop() находится между 45 и 55мкс (необходимо принять во внимание время преобразования АЦП около 7 мкс). Для оценки был выбран БКЭПТ с временем отклика тока около 2-3 мс, пятью парами полюсов и максимальной частотой вращения около 2-3 мс.

Максимальная частота вращения двигателя равна около 50000 об/мин. Если ротор использует 5 пар полюсов, то результирующая частота на выходе датчиков Холла будет равна (50000 об/мин/60)*5 = 4167 Гц. Функция mc_estimation_speed() запускается при каждом нарастающем фронте датчика Холла А, т.е. каждые 240 мкс при длительности выполнения 31 мкс.

Функция mc_switch_commutation() зависит от работы датчиков Холла. Она выполняется при возникновении фронтов на выходе одного из трех датчиков Холла (нарастающий или падающий фронты), таким образом, за один период импульсов на выходе датчика Холла генерируется шесть прерываний, а результирующая периодичность вызова функции равна 240/6 мкс = 40 мкс.

Наконец, время преобразования контура стабилизации должно быть, по крайней мере, в два раза меньше чем время реагирования двигателя (около 1 мс).

Результаты приведены на рисунке 17.


Рисунок 17. Оценка загрузки микроконтроллера

В таком случае уровень загрузки микроконтроллера около 61%.

Все измерения выполнялись с использованием одного и того же программного обеспечения. Коммуникационные ресурсы не используются (УАПП, LIN...).

При таких условиях используется следующий объем памяти:

  • 3175 байт памяти программ (38,7% от всего объема флэш-памяти).
  • 285 байт памяти данных (55,7% от всего объема статического ОЗУ).

Конфигурация и использование ATAVRMC100

На рисунке 18 представлена полная схема различных режимов работы стартового набора ATAVRMC100.


Рисунок 18. Назначение портов ввода-вывода микроконтроллера и коммуникационные режимы

Режим работы

Поддерживается два различных режима работы. Установите перемычки JP1, JP2 и JP3 в соответствии с рисунком 19 для выбора одного из этих режимов. В данных рекомендациях по применению используется только режим с использованием датчиков. Полное описание аппаратной части приведено в руководстве пользователя к набору ATAVRMC100.


Рисунок 19. Выбор режима управления с использованием датчиков

На рисунке 19 показаны исходные установки перемычек, которые соответствуют использованию программного обеспечения, связанного с данными рекомендациями по применению.

Программа, которая поставляется вместе с платой ATAVRMC100, поддерживает два режима работы:

  • запуск двигателя на максимальной скорости без внешних компонентов.
  • регулировка скорости двигателя с помощью одного внешнего потенциометра.


Рисунок 20. Подключение потенциометра

Заключение

В данных рекомендациях по применению представлено аппаратное и программное решение устройства управления бесколлекторным электродвигателем постоянного тока с использованием датчиков. Помимо данного документа, доступен для скачивания полный исходный код.

В состав программной библиотеки входит функции запуска и управления скоростью любого БКЭПТ со встроенными датчиками.

Принципиальная схема содержит минимум внешних компонентов, необходимых для управления БКЭПТ со встроенными датчиками.

Возможности ЦПУ и памяти микроконтроллера AT90PWM3 позволят разработчику расширить функциональные данного решения.


Рисунок 21. Принципиальная электрическая схема (часть 1)


Рисунок 22. Принципиальная электрическая схема (часть 2)


Рисунок 23. Принципиальная электрическая схема (часть 3)


Рисунок 24. Принципиальная электрическая схема (часть 4)

Документация:

Фантастический евроремонт квартир и ремонт коттеджей за большие деньги.

Как только я начал заниматся авиамоделизмом, мне сразу стало интересно почему у двигателя три провода, почему он такой маленький и в то же время такой мощный и зачем ему нужен регулятор скорости... Прошло время, и я во всем разобрался. И дальше поставил перед собой задачу сделать своими руками бесколлекторный двигатель.

Принцип работы электрического двигателя:
В основу работы любой электрической машины положено явление электромагнитной индукции. Поэтому если в магнитное поле поместить рамку с током, то на неё подействует сила Ампера , которая создаст вращательный момент. Рамка начнет поворачиваться и остановится в положении отсутствия момента, создаваемого силой Ампера.


Устройство электрического двигателя:
Любой электрический двигатель состоит из неподвижной части - Статора и подвижной части - Ротора . Для того чтобы началось вращение, нужно по очереди менять направление тока. Эту функцию и выполняет Коллектор (щетки).

Бесколлекторный двигатель - это двигатель ПОСТОЯННОГО ТОКА без коллектора, в котором функции коллектора выполняет электроника. (Если у двигателя три провода, это не значит что он работает от трехфазного переменного тока! А работает он от "порций" коротких импульсов постоянного тока, и не хочу вас шокировать, но те же двигатели которые используются в кулерах, тоже бесколлекторные, хоть они и имеют всего два провода питания постоянного тока)

Устройство бесколлекторного двигателя:
Inrunner
(произносится как "инраннер"). Двигатель имеет расположенные по внутренней поверхности корпуса обмотки, и вращающийся внутри магнитный ротор.


Outrunner
(произносится как "аутраннер"). Двигатель имеет неподвижные обмотки (внутри) вокруг которых вращается корпус с помещенным на его внутреннюю стенку постоянными магнитами.

Принцип работы:
Для того чтобы бесколлекторный двигатель начал вращаться, напряжение на обмотки двигателя надо подавать синхронно. Синхронизация может быть организованна с использованием внешних датчиков (оптические или датчики холла), так и на основе противоЭДС (бездатчиковый), которая возникает в двигателе при его вращении.

Бездатчиковое управление:
Существуют бесколлекторные двигатели без каких либо датчиков положения. В таких двигателях определение положения ротора выполняется путем измерения ЭДС на свободной фазе. Мы помним, что в каждый момент времени к одной из фаз (А) подключен «+» к другой (В) «-» питания, одна из фаз остается свободной. Вращаясь, двигатель наводит ЭДС (т.е. в следствии закона электромагнитной индукции в катушке образуется индукционный ток) в свободной обмотке. По мере вращения напряжение на свободной фазе (С) изменяется. Измеряя напряжение на свободной фазе, можно определить момент переключения к следующему положению ротора.
Что бы измерить это напряжение изпользуется метод "виртуальной точки". Суть заключается в том, что, зная сопротивление всех обмоток и начальное напряжение, можно виртуально "переложить провод" в место соединения всех обмоток:
Регулятор скорости бесколлекторного двигателя:
Бесколлекторный двигатель без электроники - просто железка, т.к. при отсутствии регулятора, мы не можем просто подключить напряжение на него, чтоб он просто начал нормальное вращение. Регулятор скорости - это довольно сложная система радиокомпонентов, т.к. она должна:
1) Определять начальное положение ротора для запуска электродвигателя
2) Управлять электродвигателем на низких скоростях
3) Разгонять электродвигатель до номинальной (заданной) скорости вращения
4) Поддерживать максимальный момент вращения

Принципиальная схема регулятора скорости (вентильная):


Бесколлекторные двигатели были придуманы на заре появления электричества, однако систему управления к ним никто не мог сделать. И только с развитием электроники: с появлением мощных полупроводниковых транзисторов и микроконтроллеров, бесколлекторные двигатели стали применятся в быту (первое промышленное использование в 60-х годах).

Достоинства и недостатки бесколлекторных двигателей:

Достоинства:
-Частота вращения изменяется в широком диапазоне
-Возможность использования во взрывоопасной и агрессивной среде
-Большая перегрузочная способность по моменту
-Высокие энергетические показатели (КПД более 90 %)
-Большой срок службы, высокая надёжность и повышенный ресурс работы за счёт отсутствия скользящих электрических контактов

Недостатки:
-Относительно сложная система управления двигателем
-Высокая стоимость двигателя, обусловленная использованием дорогостоящих материалов в конструкции ротора (магниты, подшипники, валы)
Разобравшись с теорией, перейдем к практике: спроектируем и сделаем двигатель для пилотажной модели МХ-2.

Список материалов и оборудования:
1) Проволока (взятая из старых трансформаторов)
2) Магниты (купленные в интернете)
3) Статор (барашек)
4) Вал
5) Подшипники
6) Дюралюминий
7) Термоусадка
8) Доспуп к неограниченному техническому хламу
9) Доступ к инструментам
10) Прямые руки:)

Ход работы:
1) С самого начала решаем:

Для чего делаем двигатель?
На что он должен быть рассчитан?
В чем мы ограничены?

В моем случае: я делаю двигатель для самолета, значит пускай он будет внешнего вращения; рассчитан он должен на то, что он должен выдать 1400 грамм тяги при трех-баночном аккумуляторе; ограничен я в весе и в размере. Однако с чего же начать? Ответ на этот вопрос прост: с самой трудной детали, т.е. с такой детали, которую легче просто найти, а все остальное подгонять под неё. Я так и поступил. После многих неудачных попыток сделать статор из листовой мягкой стали, мне стало понятно, что лучше найти её. Нашел я её в старой видеоголовке от видеорекоудора.

2) Обмотка трехфазного бесколлекторного двигателя выполняется изолированным медным проводом, от сечения которого зависит значение силы тока, а значит и мощность двигателя. Незабываем что, чем толще проволока, тем больше оборотов, но слабее крутящий момент. Подбор сечения:

1А - 0.05мм; 15А - 0.33мм; 40А - 0.7мм

3А - 0.11мм; 20А - 0.4мм; 50А - 0.8мм

10А - 0.25мм; 30А - 0.55мм; 60А - 0.95мм


3) Начинаем наматывать на полюса проволоку. Чем больше витков (13) намотано на зуб, тем большее магнитное поле. Чем сильнее поле, тем больший крутящий момент и меньшее количество оборотов. Для получения высоких оборотов, необходимо мотать меньшее количество витков. Но вместе с этим падает и крутящий момент. Для компенсации момента, обычно на мотор подают более высокое напряжение.
4) Дальше выбираем способ соединения обмотки: звездой или треугольником. Соединение звездой дает больший крутящий момент, но меньшее количество оборотов, чем соединение треугольником в 1.73 раз. (впоследствии было выбрано соединение треугольник)

5) Выбираем магниты. Количество полюсов на роторе должно быть четным (14). Форма применяемых магнитов обычно прямоугольная. Размер магнитов зависит от геометрии двигателя и характеристик мотора. Чем сильнее применяемые магниты, тем выше момент силы, развиваемый двигателем на валу. Также чем больше количество полюсов, тем больше момент, но меньше оборотов. Магниты на роторе закрепляются с помощью специального термоклея.

Испытания данного двигателя я проводил на созданной мной витномоторной установке, которая позволяет измерить тягу, мощность и обороты двигателя.

Чтобы увидеть отличия соединений "звезда" и "треугольник" я соединял по разному обмотки:

В итоге получился двигатель соответствующий характеристикам самолета, масса которого 1400 грамм.

Характеристики полученного двигателя:
Потребляемый ток: 34.1А
Ток холостого хода: 2.1А
Сопротивление обмоток: 0.02 Ом
Количество полюсов: 14
Обороты: 8400 об/мин

Видеоотчет испытания двигателя на самолете... Мягкой посадки:D

Расчет КПД двигателя:


Очень хороший показатель... Хотя можно было еще выше добиться...

Выводы:
1) У бесколлекторных двигателей высокая эффективность и КПД
2) Бесколлекторные двигатели компактны
3) Бесколлекторные двигатели можно использовать во взрывоопасных средах
4) Соединение звездой дает больший крутящий момент, но меньшее количество оборотов в 1.73 раза, чем соединение треугольником.

Таким образом, изготовить собственный бесколлекторный мотор для пилотажной модели самолета- задача выполнимая

Если у вас есть вопросы или вам что-то не понятно, задавайте мне вопросы в комметариях этой статьи. Удачи всем)

Немного из истории:

Главная проблема всех двигателей - это перегревание. Ротор вращался внутри какого-нибудь статора, и поэтому тепло от перегрева никуда не уходило. Людям пришла в голову гениальная идея: вращать не ротор, а статор, который при вращении охлаждался бы воздухом. Когда создали такой двигатель, он стал широко использоваться в авиации и судостроении, и поэтому его прозвали Вентильным двигателем.

Вскоре был создан электрический аналог вентильного двигателя. Назвали его бесколлекторным мотором, потому что у него не было коллекторов (щеток).

Бесколлекторный двигатель.

Бесколлекторные (brushless англ.) электродвигатели пришли к нам сравнительно недавно, в последние 10-15 лет . В отличие от коллекторных моторов они питаются трехфазным переменным током. Бесколлекторные двигатели эффективно работают в более широком диапазоне оборотов и имеют более высокий КПД . Конструкция двигателя при этом относительно проще, в ней нет щеточного узла, который постоянно трется с ротором и создает искры. Можно сказать, что бесколлекторные моторы практически не изнашиваются. Стоимость бесколлекторных двигателей несколько выше, чем коллекторных. Это вызвано тем, что все бесколлекторные моторы снабжены подшипникам и, как правило, изготовлены более качественно.



Испытания показали:
Тяга с винтом 8х6 = 754 грамма ,
Частота вращения = 11550 об/мин ,
Потребляемая мощность = 9 ватт (без винта), 101 ватт (с винтом),

Мощность и КПД

Мощность можно вычислить вот таким способом:
1) Мощность в механике вычисляется по такой формуле: N= F*v , где F - сила, а v - скорость. Но так как, винт находится в статическом состояние, то движения нет, кроме вращательного. Если этот мотор установить на авиамодель, то можно было бы замерить скорость (она равна 12 м/с) и посчитать полезную мощность:
N полез= 7.54*12= 90.48 ватт
2) КПД электрического двигателя находится по такой формуле: КПД= N полезной/N затраченной *100% , где N затрат= 101 ватт
КПД= 90.48/101 *100%= 90%
В среднем КПД бесколлекторных двигателей реально и колеблется около 90% (самый большой КПД достигнутый данным видом моторов равен 99.68% )

Характеристики двигателя:

Напряжение: 11.1 вольт
Обороты: 11550 об/мин
Максимальная сила тока: 15А
Мощность: 200 ватт
Тяга: 754 грамм (винт 8х6)

Заключение:

Цена любой вещи зависит от масштабов ее производства. Производители бесколлекторных моторов множатся, как грибы после дождя. Поэтому хочется верить, что в скором будущем цена на контроллеры и бесколлекторные двигатели упадет, как упала она на аппаратуру радиоуправления... Возможности микроэлектроники с каждым днем все расширяются, размеры и вес контроллеров постепенно уменьшаются. Можно предположить, что в скором будущем контроллеры начнут встраивать прямо в двигатели! Может, мы доживем до этого дня...

Одна из причин, по которой конструкторы проявляют интерес именно к бесколлекторным электродвигателям — это необходимость в высокооборотных моторах с небольшими размерами. Причём у этих двигателей очень точное позиционирование. В конструкции имеется подвижный ротор и неподвижный статор. На роторе находится один постоянный магнит или несколько, расположенных в определённой последовательности. На статоре же находятся катушки, которые создают магнитное поле.

Нужно отметить еще одну особенность — бесколлекторные электродвигатели могут иметь якорь, расположенный как внутри, так и на внешней стороне. Следовательно, два типа конструкции могут иметь определенное применение в различных сферах. При расположении якоря внутри получается добиться очень высокой скорости вращения, поэтому такие моторы очень хорошо работают в конструкциях систем охлаждения. В том случае, если устанавливается привод с внешним расположением ротора, можно добиться очень точного позиционирования, а также высокой устойчивости к перегрузкам. Очень часто такие моторы используются в робототехнике, медицинском оборудовании, в станках с частотным программным управлением.

Как работают моторы

Для того чтобы привести в движение ротор бесколлекторного электродвигателя постоянного тока необходимо использовать специальный микроконтроллер. Его не получится запустить таким же образом, как синхронную или асинхронную машину. При помощи микроконтроллера получается включить обмотки двигателя так, чтобы направление векторов магнитных полей на статоре и якоре были ортогональны.

Другими словами, при помощи драйвера получается регулировать который действует на ротор бесколлекторного двигателя. Чтобы переместить якорь необходимо осуществить правильную коммутацию в обмотках статора. К сожалению, обеспечить плавное управление вращением не получается. Зато можно очень быстро увеличить ротора электродвигателя.

Отличия коллекторных и бесколлекторных двигателей

Основное отличие заключается в том, что на бесколлекторных электродвигателях для моделей отсутствует обмотка на роторе. В случае с коллекторными электромоторами, на их роторах имеются обмотки. А вот постоянные магниты устанавливаются на неподвижной части двигателя. Кроме того, на роторе устанавливается специальной конструкции коллектор, к которому производится подключение графитовых щёток. С их помощью подается напряжение на обмотку ротора. Принцип работы бесколлекторного электродвигателя тоже существенно отличается.

Как работает коллекторная машина

Чтобы произвести запуск коллекторного двигателя, потребуется подать напряжение на обмотку возбуждения, которая расположена непосредственно на якоре. При этом образуется постоянное магнитное поле, которое взаимодействует с магнитами на статоре, в результате чего проворачиваются якорь и коллектор, закрепленный на нём. При этом подается питание на следующую обмотку, происходит повтор цикла.

Скорость вращения ротора зависит напрямую от того, насколько интенсивно магнитное поле, а последняя характеристика зависит напрямую от величины напряжения. Следовательно, чтобы увеличить или уменьшить частоту вращения, необходимо изменить напряжение питания.

Для реализации реверса потребуется только лишь изменить полярность подключения мотора. Для такого управления не нужно использовать специальные микроконтроллеры, изменять частоту вращения можно при помощи обычного переменного резистора.

Особенности бесколлекторных машин

Но вот управление бесколлекторным электродвигателем невозможно без использования специальных контроллеров. Исходя из этого, можно сделать вывод, что в качестве генератора моторы такого типа применяться не могут. Для эффективности управления можно отслеживать положение ротора с помощью нескольких датчиков Холла. При помощи таких несложных устройств получается значительно улучшить характеристики, но стоимость электродвигателя увеличится в несколько раз.

Запуск бесколлекторных моторов

Изготавливать микроконтроллеры самостоятельно нет смысла, намного лучшим вариантом окажется покупка готового, пусть и китайского. Но необходимо придерживаться следующих рекомендаций при выборе:

  1. Учитывайте максимально допустимую силу тока. Этот параметр обязательно пригодится для различных видов работы привода. Характеристика часто указывается производителями непосредственно в названии модели. Очень редко указываются значения, характерные для пиковых режимов, в которых микроконтроллер не может работать продолжительное время.
  2. Для продолжительной работы необходимо учитывать и максимальную величину напряжения питания.
  3. Обязательно учитывайте сопротивление всех внутренних цепей микроконтроллера.
  4. Обязательно нужно учитывать максимальное число оборотов, которое характерно для работы этого микроконтроллера. Обратите внимание на то, что он не сможет увеличить максимальную частоту вращения, так как ограничение сделано на уровне программного обеспечения.
  5. Дешёвые модели микроконтроллерных устройств имеют импульсов в интервале 7...8 кГц. Дорогие экземпляры можно перепрограммировать, и этот параметр увеличивается в 2-4 раза.

Старайтесь подбирать микроконтроллеры по всем параметрам, так как они влияют на мощность, которую может развить электродвигатель.

Как осуществляется управление

Электронный блок управления позволяет провести коммутацию обмоток привода. Для определения момента переключения при помощи драйвера отслеживается положение ротора по датчику Холла, установленном на приводе.

В том случае, если нет таких устройств, необходимо считывать обратное напряжение. Оно генерируется в катушках статора, не подключенных на данный момент времени. Контроллер — это аппаратно-программный комплекс, он позволяет отслеживать все изменения и максимально точно задавать порядок коммутации.

Трехфазные бесколлекторные электродвигатели

Очень много бесколлекторных электродвигателей для авиамоделей выполняется под питание постоянным током. Но существуют и трехфазные экземпляры, в которых устанавливаются преобразователи. Они позволяют из постоянного напряжения сделать трехфазные импульсы.

Работа происходит следующим образом:

  1. На катушку "А" поступают импульсы с положительным значением. На катушку "В" - с отрицательным значением. В результате этого якорь начнет двигаться. Датчики фиксируют смещение и подаётся сигнал на контроллер для осуществления следующей коммутации.
  2. Происходит отключение катушки "А", при этом импульс положительного значения поступает на обмотку "С". Коммутация обмотки "В" не претерпевает изменений.
  3. На катушку "С" попадается положительный импульс, а отрицательный поступает на "А".
  4. Затем вступает в работу пара "А" и "В". На них и подаются положительные отрицательные значения импульсов соответственно.
  5. Затем положительный импульс опять поступает на катушку "В", а отрицательный на "С".
  6. На последнем этапе происходит включение катушки "А", на которую поступает положительный импульс, и отрицательный идет к С.

И после этого происходит повтор всего цикла.

Преимущества использования

Изготовить своими руками бесколлекторный электродвигатель сложно, а реализовать микроконтроллерное управление практически невозможно. Поэтому лучше всего использовать готовые промышленные образцы. Но обязательно учитывайте достоинства, которые получает привод при использовании бесколлекторных электродвигателей:

  1. Существенно больший ресурс, нежели у коллекторных машин.
  2. Высокий уровень КПД.
  3. Мощность выше, нежели у коллекторных моторов.
  4. Скорость вращения набирается намного быстрее.
  5. Во время работы не образуются искры, поэтому их можно использовать в условиях с высокой пожарной опасностью.
  6. Очень простая эксплуатация привода.
  7. При работе не нужно использовать дополнительные компоненты для охлаждения.

Среди недостатков можно выделить очень высокую стоимость, если учитывать еще и цену контроллера. Даже кратковременно включить для проверки работоспособности такой электродвигатель не получится. Кроме того, ремонтировать такие моторы намного сложнее из-за их особенностей конструкции.