Ит технологии по дороге с современным автопромом. Инновации в автомобилестроении: машины будущего, о которых грезили фантасты


Производственный процесс представляет собой совокупность действий, в результате которых сырье или полуфабрикат, поступающие на завод, превращаются в готовую продукцию (в автомобиль) (рис. 2.1). Производственный процесс автомобильного завода включает в себя получение заготовок, различные виды их обработки (механическую, термическую, химическую и др.), контроль качества, транспортирование, хранение на складах, сборку машины, ее испытание, регулировку, отправку потребителю и т.д. Вся совокупность этих действий может быть осуществлена либо на нескольких заводах (при кооперировании), либо в отдельных цехах (литейном, механическом, сборочном) одного завода.

Рис. 2.1. Схема производственного процесса


Технологическим процессом называется часть производственного процесса, непосредственно связанная с последовательным изменением состояния предмета производства (материала, заготовки, детали, машины).

Изменение качественного состояния касаются химических и физических свойств материала, формы и относительного положения поверхностей детали, внешнего вида объекта производства. В технологический процесс включаются дополнительные действия: контроль качества, очистка заготовок и деталей и т.п.

Технологический процесс выполняется на рабочих местах.

Рабочим местом называется участок производственной площади, оборудованной в соответствии с выполняемой на нем работой одним или несколькими рабочими. Законченную часть технологического процесса, выполняемую на отдельном рабочем месте, одним или несколькими рабочими, называют ОПЕРАЦИЯ . Операция является основным элементом производственного планирования и учета. Например см. рис. 2.2.

Рис. 2.2. Сверление отверстия; напрессовка подшипника на вал

Операция может быть выполнена за один или несколько установов.

Установом называется часть операции, выполняемая при неизменном закреплении обрабатываемой заготовки или собираемого узла. Например, Рис. 2.3.

здесь ступенчатый валик обрабатывается на токарном станке за два установа.

Позицией называется каждое из различных положений неизменно закрепленной заготовки относительно оборудования, на котором производится работа. Например,

Фрезерование уступов производится за две позиции; деталь закреплена на поворотном столе, установленном на столе фрезерного станка.

Переходом называется часть операции, заключающая обработку одной поверхности одним иди несколькими одновременно действующими инструментами при неизменном режиме работы станка. При изменении обрабатываемой поверхности или инструмента при обработке той же поверхности или изменении режима работы станка при обработке той же поверхности и тем же инструментом возникает новый переход. Переход называется простым, если обработка ведется одним инструментом, сложным – при работе несколькими инструментами. Например,

обработка диска производится за несколько переходов.

Проходом называется одно перемещение инструмента относительно обрабатываемого изделия.

Переход расчленяется на приемы.

Прием представляет собой законченную совокупность отдельных движений в процессе выполнения работы или в процессе подготовки к ней. Например, рассмотренный выше пример обработки диска включает следующие приемы: взять деталь, установить ее в патроне, закрепить деталь, включить станок, подвести первый инструмент и т.д.

Элементы приема – это наименьшие для измерения во времени участи рабочего приема. Разбивка перехода на приемы и элементы приема необходима для нормирования ручных работ.

Для выполнения технологического или производственного процесса требуется определенное время (от начала до конца процесса) – это цикл.

Цикл – промежуток времени, необходимый для изготовления детали, узла или всей машины.

Оценка продуктов глазами потребителя CSA (customer satisfaction audit)

Аудиторы CSA обучены вести себя именно так, как ведут себя клиенты. Они проверяют стыки панелей, качество лакокрасочного покрытия, заглядывают под капот, проводят небольшой тест-драйв. Если аудитор «не купит» свежесобранную машину, то ее не купит и реальный клиент! Эту систему оценки распространили и на сваренные и окрашенные кузова и кабины еще до начала сборки машины.

Гарантийная политика

Внедрена программа обучения сотрудников сервиса с обязательной сертификацией. Инженеры по гарантии уполномочены принимать оперативные решения по классификации поломок, и проведению сервисных работ, не дожидаясь решений от завода. Обеспечено сопровождение процесса ремонта on-line консультациями от завода-изготовителя.


Процесс получения обратной связи по гарантии

Ключевой процесс в работе компании. Это информация используется для постоянного совершенствования автомобилей, внесения изменений и создания новых продуктов.


Клиентская служба «ГАЗ»

Служба работает круглосуточно, обрабатывая более 35 тысяч обращений в год. Горячая линия «ГАЗ» помогает собирать информацию на рынке обо всех неполадках и об уровне сервисного обслуживания. В течение 24 часов эта информация поступает на завод для анализа или оперативного принятия решений.. За несколько лет 23 тысячи автовладельцев высказали свои предложения - от изменения цветовой гаммы до внедрения специальных опций.
Информация о новых моделях, еще не запущенных в серийное производство, идет прямо с дорог – машины направляют на тестирование десяткам клиентам, которые передают сведения о ходе эксплуатации в режиме on-line. За каждым таким «испытателем» закреплен персональный куратор.


Разработка новых продуктов ведётся по системе «Ворота качества» (PPDS)

Если раньше конструкторы действовали изолированно, то сейчас на каждом из этапов разработки («ворот качества») проектная группа включает всех специалистов - конструкторов, специалистов производственного инжиниринга, технологов, специалистов по Производственной системе и управлению качеством. Система PPDS - это новая школа создания продукта, которая полностью отталкивается от требований рынка: сначала выясняем у покупателя, какими функциями должен обладать будущий автомобиль, и только потом создаем его, контролируя на каждом этапе проектирования качество и себестоимость, проводя комплексные испытания машины.


Создание и вывод на рынок новинок

За последние 5 лет этот процесс резко ускорился. При этом уже в концепцию продукта закладывается такая важная для клиента характеристика, как стоимость владения автомобилем. По данным «Автостата», первый владелец «Газели» эксплуатирует ее 63 месяца, второй владелец эксплуатирует 58 месяцев. То есть машина служит 10 лет. У иномарок первый владелец эксплуатирует авто 33 месяцев, второй – 27. То есть машина служит только 5 лет. Это много говорит о стоимости обслуживания. На российском рынке в сегменте LCV присутствуют все мировые бренды. Но стоимость владения, потребительские качества, функциональность приводят к тому, что клиенты выбирают наш автомобиль.


Поставка комплектующих: от закупки продуктов к закупке качественных процессов

Поставщику мало продемонстрировать надлежащее качество товарной партии деталей. Нужно показать, что его производственные процессы построены таким образом, чтобы гарантировать качество постоянно.


Грамотно спланированное производство – благодатная почва для внедрения и постоянного обновления инструментов обеспечения качества:

Стандарты качества на основе требований к продукту, унифицированные показатели качества, оперативная обратная связь, цепочка помощи по проблемам в производстве, эффективная система мотивации персонал – все эти инструменты позволяют постоянно совершенствовать выпускаемую продукцию. Особое внимание приковано к предупреждению ошибок. Примером использования методики является принцип «четырех глаз», когда прямо на конвейере оператор на последующей операции проследит за качеством работы предыдущего. При построении системы качества применяются все элементы Производственной системы, чтобы рабочие места были стандартизированными, процессы – удобными для операторов, потери – минимальными.


Качество производственных процессов

Если не будет отклонений в операциях, то не будет дефектов и в конечном продукте. В 2017 году дополнительно к существующим инструментам качества, в цехе сборки автомобилей «ГАЗ» внедрен новый стандарт аудита производственных процессов VDA 6.3., разработанный Союзом автомобилестроения Германии. Стандарт применим для процессов любого этапа жизненного цикла автомобиля: от планирования и разработки новых моделей до производства и послепродажного обслуживания

– одна из первых отраслей, где 3D-технологии нашли коммерческое применение: еще в 1988 год концерн Ford начал использовать 3D-принтеры для печати отдельных элементов прототипов.

Сегодня этот сектор экономики по максимуму использует достижения аддитивных технологий и 3D-сканирования. Трехмерная печать является идеальным способом создания прототипов , функциональных деталей и узлов, а также оснастки и пресс-форм. Она позволяет сэкономить время и деньги на стадиях разработки продукта и литья, обеспечивая изготовление геометрически сложных деталей с высокой детализацией. 3D-сканеры и специализированное программное обеспечение на новом уровне решают задачи контроля геометрии и реверс-инжиниринга , сокращая сроки производства автомобилей, способствуя повышению качества продукции и уменьшению процента брака.

Некоторые крупные автопроизводители уже наладили серийное изготовление на 3D-принтерах компонентов для своих классических моделей или кастом-каров. Лидеры рынка вкладывают огромные средства в создание центров аддитивных технологий для опытно-экспериментального производства. Такой центр, есть, к примеру, у BMW – он производит более 100 тысяч компонентов в год, а в 2019 году планируется открытие еще одного крупного комплекса.

Завод Nissan в Санкт-Петербурге: изготовленные на 3D-принтере детали (белые на фото) используются для фиксации крышки багажника. Фото: «Ведомости» / Nissan

Развитие технологий 3D-печати и разработка новых материалов с улучшенными физическими свойствами также позволяют внедрять радикально новые, инновационные идеи. Так, технология «безвоздушных» шин Michelin Visionary Concept с возможностью изменить рисунок протектора в зависимости от погоды исключает проколы, проблему низкого давления и другие риски при вождении.

Возможно, полностью напечатанный на 3D-принтере автомобиль – реальность не столь отдаленного будущего. Однако все вышеперечисленное – достижения западных автопроизводителей. А какова ситуация и перспективы развития аддитивных технологий в России? В этой статье мы остановимся на преимуществах 3D-печати , рассмотрим вопрос применения инноваций на отечественном авторынке, а также практические примеры внедрения.

Как 3D-печать используется в автомобилестроении

Аддитивные технологии эффективно решают следующие задачи автомобильного производства:

  • создание функциональных прототипов;
  • создание выжигаемых и выплавляемых моделей для литья ;
  • производство оснастки и пресс-форм;
  • мелкосерийное производство.

Прототипирование позволит оптимизировать производство тем предприятиям, которые занимаются выпуском автомобилей (но не сборкой готовых моделей), а также производителям автокомпонентов, поставляемых на конвейер.

Средствами топологической оптимизации проектировщик может задать практически любую необходимую геометрию детали и вносить изменения в дизайн на более поздних этапах разработки. 3D-модель передается из САПР на 3D-принтер, который в короткие сроки печатает прототипы, оснастку или пресс-формы для литья изделий . Тем самым сокращаются расходы на производство, сроки разработки продукта и его вывода на рынок. В частности, предприятие может наладить оперативное изготовление компонентов, приурочив его к выпуску автомобиля.

Благодаря 3D-печати завод Nissan в Санкт-Петербурге сэкономил в 2017 году более 1 млн рублей, не заказывая производство оснастки на стороне

Оснастку и изделия, которые отвечают необходимым прочностным характеристикам, можно выпускать непосредственно на заводе, имея всего лишь один 3D-принтер. Он будет печатать различные по номенклатуре детали, что невозможно при использовании станков и других традиционных инструментов.

Технологии, в основном применяемые для прототипирования:

  • FDM (моделирование методом послойного наплавления);
  • SLS (селективное лазерное спекание).

Оснастка и пресс-формы, которые печатаются из пластиков и фотополимерной смолы , будут в разы дешевле металлических.

Изготавливать функциональные изделия можно и на металлических 3D-принтерах (например, по SLM-технологии). 3D-печать металлом также подходит при выпуске небольших партий, в том числе при создании кастомизированных продуктов. Новейшие разработки в области металлических порошков открыли путь к изготовлению более легких, более плотных, а в отдельных случаях – более прочных деталей. Благодаря топологической оптимизации на 3D-принтере можно выращивать компоненты сложной формы и фактуры (с ячеистой структурой, внутренними каналами и т.п.), в том числе цельнометаллические, которые раньше собирались из нескольких элементов.

Западный опыт: цифры и факты

Команда Renault Sport Formula One одной из первых стала применять 3D-печать для прототипирования. Сегодня небольшой группе инженеров предоставлена возможность производить сотни деталей в неделю для испытаний в аэродинамической трубе, разрабатывать инновационные детали для проведения испытаний и установки на болиды и в целом ускорить процесс НИОКР. Благодаря технологиям SLA и SLS от 3D Systems изготовление сложных автомобильных деталей занимает не недели, а всего несколько часов.

BMW одной из первых среди автомобильных компаний напечатала на 3D-принтере партию из нескольких тысяч металлических деталей для модели BMW i8 Roadster. Мягкая складная крыша этого родстера имеет изготовленный аддитивным способом компонент из алюминиевого сплава с инновационным бионическим дизайном, повторяющим природные формы. Новое изделие имеет более высокую степень жесткости по сравнению с аналогом, который производился методом литья под давлением, а также меньший вес.

Компания Steeda Autosports , крупнейший производитель аксессуаров для Ford, использует технологию полноцветной 3D-печати для создания прототипов разнообразных компонентов – от колпачка масленки до литых труб системы холодного впуска. Результат: срок выхода продукта на рынок сокращается на несколько недель, и на каждом изделии экономится 3000 долларов за счет снижения расходов на мехобработку и создание литейных форм.

Michelin производит на металлических 3D-принтерах вставку в пресс-форму для разделителя ламелей – самых изнашиваемых элементов покрышки. Выбор новой технологии, вместо применявшихся ранее штамповки и фрезеровки, обусловлен мелкозернистой структурой металла, лучшей теплопроводностью и, как следствие, меньшим износом.

Еще больше историй внедрения - в нашем блоге!

Ждет ли Россию бум аддитивных технологий?

В конце лета – начале осени в Москве прошло несколько крупных международных мероприятий автомобильной отрасли , на которых побывали специалисты iQB Technologies . Прежде всего, это Московский автосалон, где мы увидели множество перспективных отечественных разработок. Всеобщее внимание привлекло семейство автомобилей представительского и высшего класса «Аурус» (проект «Кортеж») и новинки ВАЗа, закрывшего свою «классическую» программу и показавшего «Весту», обновленную «Гранту», а также концепт новой «Нивы 4х4». Яндекс продолжает с успехом продвигать свой проект беспилотных авто, и посетители автосалона могли совершить захватывающую поездку в такси без водителя. Но самой, пожалуй, обсуждаемой разработкой сезона стал концепт электрокара CV-1 в корпусе старого «москвича», представленный «Калашниковым» на военно-техническом форуме «Армия-2018». Можно констатировать, что российский автопром медленно, но верно движется в общемировом направлении.

Пик продаж на авторынке России пришелся на 2012 год, затем начался спад, преодолеть который пока не удается. Улучшить ситуацию призвана стратегия развития автомобилестроения на 2018-2025 годы , разработанная Правительством Российской Федерации. В ней четко определены приоритетные задачи отрасли – увеличение выпуска собственных моделей автомобилей и качественных автокомпонентов, а также налаживание связей между производителями автокомпонентов. При этом локализация должна составлять не менее 70%.

Новинки Московского автосалона: Aurus «Сенат» - российский автомобиль представительского класса

Если в 1990-е годы Россия практически не выпускала автомобилей, закупая подержанные в Японии или Германии, то в начале 2000-х в стране действовало уже 15 крупных автозаводов. Понятно, что при реальной локализации в 50-70% значительная часть добавленной стоимости на детали создается за рубежом (они поставляются и собираются на конвейере в России), но сегодня мы полностью обеспечиваем свой внутренний рынок. Самые востребованные модели – такие, как Solaris, Polo, Rapid – выпускаются в России.

Согласно правительственной стратегии, процент бюджета предприятий, который закладывается в инновации и новые разработки, сейчас составляет порядка 15%. Поставлена цель довести этот показатель до общемирового показателя – 25-30%, и это открывает хорошие перспективы для внедрения 3D-технологий в российском автопроме.

Для отечественных автопроизводителей аддитивное направление – пока что почти не освоенная территория, поэтому информации о применении 3D-технологий крайне мало. Газета «Ведомости» сообщает, что группа «ГАЗ» , по словам ее представителя, использует 3D-печать для прототипирования деталей машин. По данным официального сайта Алтайского края , корпорация «КамАЗ» в этом году получила два уникальных 3D-принтера российского производства. Эти установки печатают высокоточные песчаные формы для литья стали.

Говоря о зарубежных производителях в России, приведем пример альянса Renault-Nissan : он начал внедрение аддитивных технологий со своих западноевропейских производств, теперь пришла очередь России. На заводе Nissan в Санкт-Петербурге 3D-принтеры печатают прототипы и оснастку, а также приспособления для калибровки дверей, фар и датчиков. Это позволило предприятию сэкономить за 2017 год более 1 миллиона рублей, не заказывая производство оснастки на стороне. В Москве на предприятии Renault с помощью 3D-принтеров изготавливаются защитные элементы используемых инструментов.

Потенциал 3D-печати для автомобильного рынка

Напечатанные на 3D-принтере выжигаемые литейные модели позволяют Renault Formula One быстро изготавливать крупные металлические детали большой сложности

Итак, 3D-печать позволяет получить производителям автомобилей и автокомпонентов целый ряд преимуществ:

  1. сокращение времени на этапе разработки продукта и литья ;
  2. экономия времени и расходов на изготовление оснастки и пресс-форм;
  3. отказ от услуг подрядчиков-изготовителей оснастки;
  4. проведение технологических экспериментов и функциональное тестирование;
  5. создание геометрически сложных изделий с мелкими деталями, которые невозможно изготовить традиционными методами;
  6. снижение массы детали и экономия используемых материалов за счет топологической оптимизации ;
  7. ускорение выпуска нового продукта или эксклюзивной серии на рынок.

В условиях все более жесткой конкуренции вопрос применения инноваций встает все острее. Во всем мире растет число автопроизводителей, осознавших выгоды 3D-технологий для оптимизации производственного процесса . Как мы увидели, в российской автомобильной промышленности аддитивные методы начали внедряться относительно недавно и используются всего на нескольких крупных предприятиях российских или зарубежных автогигантов.

В сегодняшних российских реалиях внедрение аддитивного производства сталкивается со многими препятствиями, среди которых – недостаточная автоматизация многих заводов и нехватка финансирования. Такие технологии 3D-печати, как селективное лазерное плавление Яков Бондарев

Менеджер уникальных отраслевых проектов по внедрению 3D-технологий в производственный цикл. Ключевое направление работы – автомобилестроение. Яков давно увлечен темой авто- и мотоспорта, коллекционирует мотоциклы, участвовал в любительских соревнованиях. Активно осваивает 3D-моделирование и 3D-печать, современные материалы и технологии в сфере производства. Свободное время Яков посвящает созданию мебели и изделий из дерева, занимается сноубордом и любит путешествовать по России. Девиз: «Учиться никогда не поздно».

Хотите, чтобы в вашем автомобиле кнопка открывания багажника была перенесена из неудобного места под руку, а сиденье двигалось вперед еще на пару сантиметров?

Раньше такое было невозможно - автозаводы очень долго реагировали на желания покупателей. А то и не обращали внимания на просьбы, так как для их выполнения пришлось бы перестраивать весь рабочий процесс.

Однако конструирование машин под индивидуальные потребности заказчиков уже не вчерашний, а сегодняшний день. В автомобильной промышленности все активнее применяется компьютерное моделирование и виртуальные испытания вместо бумажного проектирования и создания физических прототипов, все - от отдельной детали до автомобиля в целом - создается на экране монитора.

Корреспондент "Российской газеты" на собственном опыте убедился в том, что за новыми технологиями для управления жизненным циклом изделия - будущее. И оно уже здесь. Производство гоночных машин для Формулы 1 - один из ярких примеров использования цифровых технологий в автопроме.

Штаб-квартира Red Bull Racing расположена в небольшом английском городке Милтон-Кейнс, где в нескольких корпусах сосредоточены проектный офис, испытательные стенды и производство деталей для болидов.

Снимать на заводе, кстати говоря, было нельзя - многие технологии секретны и даже во время экскурсии скрыты за зеркальными окнами офисных помещений. Даже двери открываются с помощью сканера отпечатков пальцев. Зато можно было спрашивать!

И узнать, например, что в команде работает 700 человек. Что в этом сезоне почти каждые две недели на гонку отправляется около 60 человек и 40 тонн груза. Каждый год, по сути, создается новый болид. Он состоит из 7000 уникальных деталей, при этом за сезон разрабатывается и вносится до 30000 изменений конструкции, а от идеи до рабочего экземпляра проходит всего 5 месяцев.

Сразу возникает вопрос - каким образом достигается такая оперативность? И вот тут как раз наступает время поговорить о цифровом производстве. Например - покраска. Знаете ли вы, что нанесение надписей на корпус болида приводит к тому, что он становится менее обтекаемым, возникают микрозавихрения воздуха, которые снижают скорость и увеличивают расход топлива? Так вот - есть технологии, позволяющие и надпись сделать и "заполировать" ее так, что даже лишнего грамма бензина не израсходуется. И еще один нюанс, связанный с покраской - специалисты Red Bull Racing с помощью программных продуктов Siemens, например, выяснили, что матовая или глянцевая покраска болида, как говорится, на скорость не влияют.

"Старые произведенные процессы недостаточно эффективны, они не справляются с растущей сложностью изделия, и его персонификацией под индивидуальные требования заказчика", - говорит Ян Ларссон, директор направления отраслевого и продуктового маркетинга компании Siemens PLM Software. И продолжает: для этого необходимо сначала создать цифровую модель изделия - от болта до конечного изделия - машины. Нужно организовать процесс сбора отзывов покупателей и оперативной обратной связи с ними.

И в целом использование программных продуктов цифрового производства не так уж и дорого. "Для предприятия малого бизнеса стоимость не превысит нескольких тысяч долларов. Конечно, внедрение цифровых технологий на крупном производстве обойдется дороже, но выигрыш - в повышении его эффективности, реакции на необходимые изменения покроет все затраты", - рассказал Ян Ларссон.

В разговоре с корреспондентом "РГ" он конкретизировал: многие российские предприятия, выпускающие сложную наукоемкую продукцию, активно используют цифровые технологии. В их числе предприятия авиастроения, энергетического машиностроения, автомобилестроения.

При этом параллельная коллективная работа конструкторов и технологов в виртуальной среде позволяет разрабатывать управляющие программы одновременно с тем, как идет проектирование детали. Это максимально сокращает сроки изготовления.

И позволяет быстро внедрять совершенно новые технологии, которые пока работают в автоспорте, но вполне возможно - скоро окажутся и на классических автомобильных производствах.

Министерство образования и науки

Республики Казахстан

Второй раздел «Основы ремонта автомобилей» является основным по назначению и содержанию дисциплины. В этом разделе излагаются методы обнаружения скрытых дефектов деталей, технологии их восстановления, контроля при комплектации, мтоды сборки и испытания узлов и автомобиля в целом.

Целью написания конспекта лекций является изложение курса в объеме программы дисциплины наиболее кратко и обеспечение студентов учебным пособием , позволяющим им выполнять самостоятельную работу в соответствии с программой дисциплины «Основы технологии производства и ремонта автомобилей» для студентов.

1 Основы технологии автомобилестроения

1.1 Основные понятия и определения

1.1.1 Автомобилестроение как отрасль массового

машиностроения

Автомобилестроение относится к массовому производству – наиболее эффективному. Производственный процесс автозавода охватывает все этапы производства автомобилей : изготовление заготовок деталей, все виды их механической, тепловой, гальванической и других обработок, сборку узлов, агрегатов и машины, испытание и окраску, технический контроль на всех стадиях производства, транспортировку материалов, заготовок, деталей, узлов и агрегатов на хранение на складах.

Производственный процесс автозавода осуществляется в различных цехах, которые по своему назначению делятся на заготовительные, обрабатывающие и вспомогательные. Заготовительные – литейные, кузнечные, прессовые. Обрабатывающие – механические, термические, сварочные, окрасочные. Заготовительные и обрабатывающие цехи относятся к основным цехам. К основным цехам относятся также модельный, ремонтно-механический, инструментальный и т. п. Цехи, занятые обслуживанием основных цехов, являются вспомогательными: электроцех, цех безрельсового транспорта.

1.1.2 Этапы развития автомобилестроения

Первый этап – до Великой отечественной войны. Строительство

автомобильных заводов с технической помощью иностранных фирм и постановка на производство автомобилей зарубежных марок: АМО (ЗИЛ) – форд, ГАЗ-АА – форд. Первый легковой автомобиль ЗИС-101 в качестве аналога был использован американский Бьюик (1934г.).

Завод имени Коммунистического интернационала молодежи (Москвич) выпускал легковые автомобили КИМ-10 на базе английского «Форда Префект». В 1944 году были получены чертежи, оборудование и оснастка для изготовления автомобиля «Опель».

Второй этап – после окончания войны и до распада СССР (1991) Строятся новые заводы: Минский, Кременчугский, Кутаисский, Уральский, Камский, Волжский, Львовский, Ликинский.

Разрабатываются отечественные конструкции и осваивается производство новых машин: ЗИЛ-130, ГАЗ-53, КрАЗ-257, КамАЗ-5320, Урал-4320, МАЗ-5335, Москвич-2140, УАЗ -469 (Ульяновский завод), ЛАЗ-4202, микроавтобус РАФ (Рижский завод), автобус КАВЗ (Курганский завод) и другие.

Третий этап – после распада СССР.

Заводы распределились по разным странам – бывшим республикам СССР. Нарушились производственные связи. Многие заводы прекратили производство автомобилей или резко сократили объемы. Крупнейшие заводы ЗИЛ, ГАЗ освоили малотоннажные грузовики ГАЗель, Бычок и их модификации. На заводах начали разрабатывать и осваивать типоразмерный ряд автомобилей разных назначений и разной грузоподъемности.

В Усть-Каменогорске освоено производство автомобилей «Нива» Волжского автозавода.

1.1.3 Краткий исторический очерк развития науки

о технологии машиностроения.

В первый период развития автомобилестроения производство автомобилей носило мелкосерийный характер, технологические процессы выполнялись рабочими высокой квалификации, трудоемкость изготовления автомобилей была высокой.

Оборудование, технология и организация производства на автомобильных заводах были для того времени передовыми в отечественном машиностроении. В заготовительных цехах использовались машинная формовка и конвейерная заливка опок, паровоздушные молоты, горизонтально-ковочные машины и другое оборудование. В механосборочных цехах применялись поточные линии, специальные и агрегатные станки, оснащенные высокопроизводительными приспособлениями и специальным режущим инструментом. Общая и узловая сборка производилась поточным методом на конвейерах.

В годы второй пятилетки развитие технологии автостроения характеризуется дальнейшим освоением принципов поточно-автоматизированного производства и увеличением выпуска автомобилей.

Научные основы технологии автостроения включают выбор метода получения заготовок и базирование их при обработке резанием с обеспечением высокой точности и качества, методику определения эффективности разработанного технологического процесса, методы расчета высокопроизводительных приспособлений, повышающих эффективность процесса и облегчающих труд станочника.

Решение проблемы повышения эффективности производственных процессов потребовало внедрения новых автоматических систем и комплексов, более рационального использования исходных материалов, приспособлений и инструментов, что является основным направлением работы ученых научно-исследовательских организаций и учебных заведений.

1.1.4 Основные понятия и определения изделия, производственного и технологических процессов, элементов операции

Изделие характеризуется большим разнообразием свойств: конструктивных, технологических и эксплуатационных.

Для оценки качества изделий машиностроения используют восемь видов показателей качества: показатели назначения, надежности, уровня стандартизации и унификации, технологичности, эстетические, эргономические, патентно-правовые и экономические.

Совокупность показателей можно разделить на две категории:

Показатели технического характера, отражающие степень пригодности изделия к использованию его по прямому назначению (надежность, эргономика и т. д.);

Показатели экономического характера, показывающие непосредственно или косвенно уровень материальных, трудовых и финансовых затрат на достижение и реализацию показателей первой категории, во всех возможных сферах проявления (создания, производства и эксплуатации) качества изделия; показатели второй категории включают в основном показатели технологичности.

Как объект проектирования изделие проходит ряд стадий по ГОСТ 2.103-68.

Как объект производства изделие рассматривается с позиций технологической подготовки производства, методов получения заготовок, обработки, сборки, испытания и контроля.

Как объект эксплуатации изделие анализируется по соответствию эксплуатационных параметров техническому заданию ; удобству и сокращению трудоемкости подготовки изделия к функционированию и контролю его работоспособности, удобству и сокращению трудоемкости профилактических и ремонтных работ , требуемых для повышения срока службы и восстановления работоспособности изделия, по сохранению технических параметров изделия в период длительного хранения.

Изделие состоит из деталей и узлов. Детали и узлы могут соединяться в группы. Различают изделия основного производства и изделия вспомогательного производства .

Деталь – элементарная часть машины, изготовленная без применения сборочных приспособлений.

Узел (сборочная единица) – разъемное или неразъемное соединение деталей.

Группа – соединение узлов и деталей, являющихся одной из основных составных частей машин, а также совокупность узлов и деталей, объединенных общностью выполняемых функций.

Позиция – фиксированное положение, занимаемое неизменно закрепленной обрабатываемой заготовкой или собираемой сборочной единицей совместно с приспособлением относительно инструмента или неподвижной части оборудования для выполнения определенной части операции.

Технологический переход – законченная часть технологической операции, характеризуемая постоянством применяемого инструмента и поверхностей, образуемых обработкой или соединяемых при сборке.

Вспомогательный переход – законченная часть технологической операции, состоящая из действий человека и (или) оборудования, которые не сопровождаются изменением формы, размеров и чистоты поверхности, но необходимы для выполнения технологического перехода, например, установка заготовки, смена инструмента.

Рабочий ход – законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, сопровождаемого изменением формы, размеров, чистоты поверхности или свойств заготовки.

Вспомогательный ход – законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, не сопровождаемого изменением формы, размеров, чистоты поверхности или свойств заготовки, но необходимого для выполнения рабочего хода.

Технологический процесс может быть выполнен в виде типового, маршрутного и операционного.

Типовой технологический процесс характеризуется единством содержания и последовательности большинства технологических операций и переходов для группы изделий с общими конструктивными признаками.

Маршрутный технологический процесс выполняется по документации, в которой содержание операции излагается без указания переходов и режимов обработки.

Операционный технологический процесс выполняется по документации, в которой содержание операции излагается с указанием переходов и режимов обработки.

1.1.5 Задачи, решаемые при разработке технологического

процесса

Основной задачей разработки технологических процессов является обеспечение при заданной программе выпуска деталей высокого качества при минимальной себестоимости. При этом производится:

Выбор способа изготовления и заготовки;

Выбор оборудования с учетом имеющегося на предприятии;

Разработка операций обработки;

Разработка приспособлений для обработки и контроля;

Выбор режущего инструмента.

Технологический процесс оформляется в соответствии с Единой системой технологической документации (ЕСТД) – ГОСТ 3.1102-81

1.1.6 Виды машиностроительных производств.

В машиностроении различают три типа производств: единичное, серийное и массовое.

Единичное производство характеризуется изготовлением небольших количеств изделий разнообразных по конструкции, применением универсального оборудования, высокой квалификацией рабочих и более высокой себестоимостью продукции по сравнению с другими типами производства. К единичному производству на автозаводах относятся изготовление опытных образцов автомобилей в экспериментальном цехе, в тяжелом машиностроении – производство крупных гидротурбин, прокатных станов и т. п.

В серийном производстве изготовление деталей осуществляется партиями, изделий сериями, повторяющимися через определенные промежутки времени. После изготовления данной партии деталей производится переналадка станков на выполнение операций той же или другой партии. Серийное производство характеризуется применением как универсального, так и специального оборудования и приспособлений, расстановкой оборудования как по типам станков, так и по технологическому процессу.

В зависимости от величины партии заготовок или изделий в серии различают мелкосерийное, средне - и крупносерийное производства. К серийному производству относятся станкостроение, производство стационарных двигателей внутреннего сгорания, компрессоров.

Массовым производством называется производство, при котором изготовление однотипных деталей и изделий ведется непрерывно и в большом количестве в течении длительного времени (несколько лет). Массовое производство характеризуется специализацией рабочих на выполнение отдельных операций, применением высокопроизводительного оборудования, специальных приспособлений и инструмента, расположением оборудования в последовательности, соответствующей выполнению операции, т. е. по потоку, высокой степенью механизации и автоматизации технологических процессов. В технико-экономическом отношении массовое производство является наиболее эффективным. К массовому производству относятся автомобилестроение и тракторостроение.

Приведенное деление машиностроительного производства по типам является в известной мере условным. Провести резкую грань между массовым и крупносерийным производствами или между единичным и мелкосерийным затруднительно, поскольку принцип поточно-массового производства в той или иной мере осуществляется в крупносерийном и даже в среднесерийном производстве, а характерные особенности единичного производства свойственны мелкосерийному производству.

Унификация и стандартизация изделий машиностроения способствует специализации производства, сокращению номенклатуры изделий и увеличению объемов их выпуска, а это позволяет шире применять поточные методы и автоматизацию производства.

1.2 Основы точности механической обработки

1.2.1 Понятие точности обработки. Понятие о случайных и систематических погрешностях. Определение суммарной ошибки

Под точностью изготовления детали понимается степень соответствия ее параметров параметрам, заданным конструктором в рабочем чертеже детали.

Соответствие деталей – реальной и заданной конструктором – определяется следующими параметрами:

Точностью формы детали или ее рабочих поверхностей, характеризуемой обычно овальностью, конусностью, прямолинейностью и другими;

Точностью размеров деталей, определяемой отклонением размеров от номинальных;

Точностью взаимного расположения поверхностей, задаваемой параллельностью, перпендикулярностью, концентричностью;

Качеством поверхности, определяемым шероховатостью и физико-механическими свойствами (материалом, термообработкой, поверхностной твердостью и другими).

Точность обработки может быть обеспечена двумя методами:

Установкой инструмента на размер способом пробных проходов и промеров и автоматическим получением размеров;

Наладкой станка (установка инструмента в определенное положение относительно станка один раз при его наладке на операцию) и автоматическим получением размеров.

Точность обработки в процессе выполнения операции достигается автоматически контролем и подналадкой инструмента или станка при выходе деталей из поля допуска.

Точность находится в обратной зависимости от производительности труда и стоимости обработки. Стоимость обработки резко возрастает при высоких точностях (рисунок 1.2.1, участок А), а при низких – медленно (участок В).

Экономическая точность обработки обуславливается отклонениями от номинальных размеров обрабатываемой поверхности, полученных в нормальных условиях при использовании исправного оборудования, стандартного инструмента, средней квалификации рабочего и при затратах времени и средств, не превышающих эти затраты при других сопоставимых способах обработки. Она зависит также от материала детали и припуска на обработку.

Рисунок 1.2.1 – Зависимость стоимости обработки от точности

Отклонения параметров реальной детали от заданных параметров называются погрешностью.

Причины возникновения погрешностей при обработке:

Неточность изготовления и износ станка и приспособлений;

Неточность изготовления и износ режущего инструмента;

Упругие деформации системы СПИД;

Температурные деформации системы СПИД;

Деформации деталей под влиянием внутренних напряжений;

Неточность настройки станка на размер;

Неточность установки, базирования и измерения.

Жесткостью https://pandia.ru/text/79/487/images/image003_84.gif" width="19" height="25">, направленной по нормали к обрабатываемой поверхности, к смещению лезвия инструмента, измеренному в направлении действия этой силы (Н/мкм).

Величина обратная жесткости называется податливостью системы (мкм/Н)

Деформация системы (мкм)

Температурные деформации.

Теплота, образующаяся в зоне резания распределяется между стружкой, обрабатываемой заготовкой, инструментом и частично рассеивается в окружающую среду. Например, при токарной обработке в стружку отходит 50…90% теплоты, в резец 10…40%, в заготовку 3…9%, в окружающую среду 1%.

Из-за нагрева резца в процессе обработки удлинение его достигает 30…50 мкм.

Деформация от внутреннего напряжения.

Внутренние напряжения возникают при изготовлении заготовок и в процессе их механической обработки. В литых заготовках, штамповках и поковках возникновение внутренних напряжений происходит из-за неравномерного охлаждения, а при термической обработке деталей - по причине неравномерного нагрева и охлаждения и структурных превращений. Для полного или частичного снятия внутренних напряжений в литых заготовках их подвергают естественному или искусственному старению. Естественное старение происходит при длительной выдержке заготовки на воздухе. Искусственное старение осуществляется путем медленного нагрева заготовок до 500…600font-size:14.0pt">Для снятия внутренних напряжений в штамповках и поковках их подвергают нормализации.

Неточность настройки станка на заданный размер связана с тем, что при установке режущего инструмента на размер с помощью измерительных средств или по готовой детали возникают погрешности, влияющие на точность обработки. На точность обработки оказывает влияние большое число разнообразных причин, вызывающих систематические и случайные погрешности.

Суммирование погрешностей производится по следующим основным правилам:

Систематические погрешности суммируются с учетом их знака, т. е. алгебраически;

Суммирование систематических и случайных погрешностей производится арифметически, поскольку знак случайной погрешности заранее неизвестен (наиболее неблагоприятный результат);

- случайные погрешности суммируются по формуле:

Font-size:14.0pt">где - коэффициенты, зависящие от вида кривой

распределения составляющих погрешностей.

Если погрешности подчиняются одному закону распределения, то .

Тогда font-size:14.0pt">1.2.2 Различные виды установочных поверхностей деталей и

правило шести точек. Базы конструкторские, сборочные,

технологические. Погрешности базирования

Рисунок 1.2.2 – Положение детали в системе координат

Для лишения шести степеней свободы заготовки требуется шесть неподвижных опорных точек, расположенных в трех перпендикулярных плоскостях. Точность базирования заготовки зависит от выбранной схемы базирования, т. е. схемы расположения опорных точек на базах заготовки. Опорные точки на схеме базирования изображают условными знаками и нумеруют порядковыми номерами, начиная с базы, на которой располагается наибольшее количество опорных точек. В этом случае число проекций заготовки на схеме базирования должно быть достаточным для четкого представления о размещении опорных точек.

Базой называется совокупность поверхностей, линий или точек детали (заготовки), по отношению к которым ориентируют другие поверхности детали при обработке или измерении, или по отношению к которым ориентируют другие детали узла, агрегата при сборке.

Конструкторским базами называют поверхности, линии или точки, относительно которых на рабочем чертеже детали конструктор задает взаимное положение других поверхностей, линий или точек.

Сборочными базами называют поверхности детали, определяющие ее положение относительно другой детали в собранном изделии.

Установочными базами называют поверхности детали, с помощью которых ее ориентируют при установке в приспособлении или непосредственно на станке.

Измерительными базами называют поверхности, линии или точки, относительно которых производят отсчет размеров при обработке детали.

Установочные и измерительные базы используются в технологическом процессе обработки детали и называются технологическими базами.

Основными установочными базами называют поверхности, используемые для установки детали при обработке, которыми детали ориентируются в собранном узле или агрегате относительно других деталей.

Вспомогательными установочными базами называют поверхности, которые для работы детали в изделии не нужны, но специально обрабатываются для установки детали при обработке.

По месту расположения в технологическом процессе установочные базы делятся на черновые (первичные), промежуточные и чистовые (окончательные).

При выборе чистовых баз следует по возможности руководствоваться принципом совмещения баз. При совмещении установочной базы с конструкторской базой погрешность базирования равна нулю.

Принцип единства баз – данную поверхность и поверхность, являющуюся по отношению к ней конструкторской базой, обрабатывают, пользуясь одной и той же базой (установочной).

Принцип постоянства установочной базы состоит в том, что на всех технологических операциях обработки используют одну и ту же (постоянную) установочную базу.

Рисунок 1.2.3 – Совмещение баз

Погрешностью базирования называется разность предельных расстояний измерительной базы относительно установленного на размер инструмента. Погрешность базирования имеет место при несовмещении измерительной и установочной баз заготовки. В этом случае положение измерительных баз отдельных заготовок в партии будет различным относительно обрабатываемой поверхности.

Как погрешность положения, погрешность базирования влияет на точность выполнения размеров (кроме диаметральных и связывающих единовременно обрабатываемые поверхности одним инструментом или одной инструментальной наладкой), на точность взаимного положения поверхностей и не влияет на точность их форм.

Погрешность установки заготовки:

,

где - неточность базирования заготовки;

Неточность формы базирующих поверхностей и зазоров меж -

ду ними и опорными элементами приспособлений;

Погрешность закрепления заготовки;

Погрешность положения установочных элементов приспособ -

ления на станке.

1.2.3 Статистические методы регулирования качества

технологического процесса

Статистические методы исследования позволяют оценивать точность обработки по кривым распределения действительных размеров деталей, входящих в партию. При этом различают три вида погрешностей обработки:

Систематические постоянно действующие;

Систематические закономерно изменяющиеся;

Случайные.

Систематические постоянные погрешности легко обнаруживаются и устраняются подналадкой станка.

Погрешность называется систематической закономерно изменяющейся, если в процессе обработки наблюдается закономерность в изменении погрешности детали, например под влиянием износа лезвия режущего инструмента.

Случайные погрешности возникают под действием многих причин, не связанных между собой какой-либо зависимостью, поэтому заранее нельзя установить закономерность изменения и величину погрешности. Случайные погрешности вызывают рассеивание размеров в партии деталей, обрабатываемых в одинаковых условиях. Размах (поле) рассеивания и характер распределения размеров деталей определяют по кривым распределения. Для построения кривых распределения производят измерение размеров всех деталей, обрабатываемых в данной партии, и разбивают их на интервалы. Затем определяют количество деталей в каждом интервале (частость) и строят гистограмму . Соединив средние значения величин интервалов прямыми линиями, получаем эмпирическую (практическую) кривую распределения.

Рисунок 1.2.4 – Построение кривой распределения размеров

При автоматическом получении размеров деталей, обрабатываемых на предварительно настроенных станках, распределение размеров подчиняется закону Гаусса – закону нормального распределения.

Дифференциальная функция (плотность вероятности) кривой нормального распределения имеет вид:

,

гле - переменная случайная величина;

Среднее квадратическое отклонение случайной величины https://pandia.ru/text/79/487/images/image025_22.gif" width="25" height="27">;

Среднее значение (математическое ожидание) случайной ве

Основание натуральных логарифмов.

Рисунок 1.2.5 – Кривая нормального распределения

Среднее значение значение случайной величины:

Среднеквадратическое значение:

Другие законы распределения:

Закон равной вероятности с кривой распределения, имеющей

вид прямоугольника;

Закон треугольника (закон Симпсона);

Закон Максвелла (рассеивание величин биения, дисбаланса, эксцентриситета и т. п.);

Закон модуля разности (распределение овальности цилиндрических поверхностей, непараллельности осей, отклонение шага резьбы).

Кривые распределения не дают представления об изменении рассеивания размеров деталей во времени, т. е. в последовательности их обработки. Для регулирования технологического процесса и контроля качества применяется метод медиан и индивидуальных значений и метод средних арифметических значений и размеров https://pandia.ru/text/79/487/images/image031_21.gif" width="53" height="24">, который по своему назначению больше, чем метод shortcodes">