Виды аккумуляторных батарей. Аккумулятор

Виды современных аккумуляторов для автомобилей и перспективы развития

Сегодня существует множество различных аккумуляторов. Они используются в самых разных сферах жизни человека. В качестве примера можно привести аккумуляторы в различной портативной электронике, ИБП и так далее. Но самым распространённым видом аккумуляторов на сегодняшний день являются АКБ для автомобилей. Любой автовладелец знает, что такое автомобильный стартерный аккумулятор. Эти устройства работают под капотом миллионов автомобилей по всему миру. Но не все эти аккумуляторные батареи одинаковы. Сегодня мы поговорим о видах аккумуляторов для автомобиля.

Аккумулятор представляет собой химический источник тока, который включает в свой состав нескольких элементов питания. Поэтому он также носит название аккумуляторной батареи. Объединение сразу нескольких элементов даёт больший результирующий ток и напряжение. В автомобилях наиболее распространён вид аккумуляторов с 6 элементами (ещё их называют банками), которых выдают напряжение примерно 2.1 вольт. В результате АКБ выдаёт напряжение примерно 12.6 вольт.


Первый аккумулятор этого типа разработал французский учёный Гастон Планте, который жил более 150 лет назад. Аккумуляторы с тех пор усовершенствовались, но конструкция и принцип работы АКБ дошли до нас в неизменном виде. Сегодня можно встретить различные виды аккумуляторов, которые отличаются составом электролита и материалами электродов. Наверняка все слышали о никель─кадмиевых батареях, Ni-MH, Li-ion и ряда других.

Но в качестве стартерных автомобильных аккумуляторов на сегодняшний день применяются лишь свинцово-кислотные. Объясняется это тем, что этот вид аккумуляторов имеет высокую энергетическую ёмкость. Свинцово-кислотные АКБ могут в течение короткого интервала времени выдавать большой электрический ток. Именно это и требуется для стартера, который прокручивает коленчатый вал при запуске двигателя. И замены этих аккумуляторным батареям пока нет, несмотря на то, свинец и серная кислота (в составе электролита) являются вредными и опасными веществами.

Корпус свинцовой аккумуляторной батареи выполняется из пластика, устойчивого к воздействию кислоты. вы сможете узнать из статьи по ссылке. Для изготовления электродов, как и раньше, применяется свинец. Но со времён Гастона Планте производители научились легировать свинец всевозможными добавками для достижения определённых характеристик аккумулятора. На сегодняшний день существует несколько видов аккумуляторов для автомобиля, которые рассмотрены ниже.

Основные виды автомобильных аккумуляторных батарей

Сурьмянистые АКБ

Это устаревший тип автомобильных аккумуляторов, в свинцовых пластинах которых содержится более 5 процентов сурьмы. Модели современных АКБ содержат в составе пластин значительно меньше сурьмы (Sb). Роль сурьмы в аккумуляторных пластина – это увеличение их прочности. Чистый свинец очень мягкий и не в чистом виде не подходит для использования в АКБ. Сурьма вызывает резкую активизацию процесса электролиза, который начинается в батарее при напряжении 12 вольт. При этом выделяются водород с кислородом. Это выглядит как закипание электролита.

В сурьмянистых аккумуляторах происходит большой воды из электролита. В результате понижения уровня электролита оголяются пластины электродов. Чтобы этого не происходило нужно периодически доливать в банки дистиллированную воду. В результате сурьмянистый вид автомобильных аккумуляторов часто называют обслуживаемыми. Хотя современные разновидности автомобильных аккумуляторов также имеют элементы конструкции, необходимые для обслуживания.

Сейчас сурьмянистые батареи уже не используются в качестве стартерных. Их сменили другие, более прогрессивные модификации АКБ. Этот тип аккумуляторов ещё сохранился в разных стационарных источниках тока, где требуется неприхотливость батареи. А современные автомобильные аккумуляторы выпускаются со значительно меньшим содержанием сурьмы.

Малосурьмянистые АКБ

Пластины с уменьшенным содержанием сурьмы стали использоваться для того, чтобы снизить интенсивность испарения воды из электролита. К малосурьмянистым видам аккумуляторов относятся те, что имеют в составе пластин менее 5 процентов сурьмы. В результате их применения удалось уйти от проблемы частой доливки дистиллированной воды. Но это не значит, что такие аккумуляторы совсем не нуждаются в обслуживании.

Ещё одним преимуществом этого типа автомобильных аккумуляторов является меньшая степень саморазряда батареи при хранении, чем у старых сурьмянистых моделей. Эти АКБ часто называют необслуживаемыми, но правильнее будет называть их малообслуживаемыми. Ведь заявление о том, что они не нуждаются в обслуживании, это рекламный лозунг. Потери воды из электролита все равно присутствуют. Поэтому проверять уровень и доливать дистиллированную воду все равно нужно.

К преимуществам малосурьмянистых аккумуляторов можно отнести их терпимость к электрическим параметрам бортовой сети автомобиля. Если в сети возникают перепады напряжения, то параметры батареи не сильно страдают от этого. Этого нельзя сказать о более современных видах автомобильных аккумуляторов: кальциевых, AGM, гелевых. Специалисты считают, что малосурьмянистый вид аккумуляторов лучше всего годиться для эксплуатации на легковых автомобилях отечественного производства. Это вызвано тем, что пока ещё не на всех российских авто обеспечивается стабильность напряжения в бортовой сети. При этом этот вид АКБ имеет доступную цену.

Кальциевые АКБ

Добавление кальция в свинцовые решётки вместо сурьмы стало решением по уменьшению испарения воды в АКБ. Часто на аккумуляторах этого вида можно встретить маркировку типа Ca/Ca. Такое обозначение говорит о том, что кальций содержится в решётках положительных и отрицательных электродов. Некоторые производители ещё добавляют в небольшом количестве серебро. Это позволяет снизить внутреннее сопротивление батареи, увеличить КПД и ёмкость. Но главной особенностью кальциевых АКБ стало снижение интенсивности электролиза и, соответственно, падение уровня электролита.


Сейчас выпускаются модели кальциевых аккумуляторов, в которых за весь срок эксплуатации испарение воды практически отсутствует. В результате владельцу автомобиля не нужно проверять уровень электролита и его плотность. И в этом случае название необслуживаемые батареи будет справедливо. Помимо незначительного расхода воды, аккумуляторы кальциевого типа имеют низкую степень саморазряда. По сравнению с сурьмянистыми аккумуляторами саморазряд меньше примерно на 70 процентов. В результате батареи вида Ca/Ca могут значительно дольше сохранять свои эксплуатационные характеристики при хранении. По сути, замена сурьмы кальцием увеличило напряжение, необходимое для старта процесса электролиза, с 12 до 16 вольт. Поэтому и перезаряд стал не столь критичен.

Но любое устройство имеет как преимущества, так и недостатки. Кальциевые АКБ гораздо более чувствительны к сильному разряду, чем другие виды аккумуляторов для автомобилей. Хватает 3─4 сильных разрядов и ёмкость аккумулятора необратимо падает. Это означает, что сильно уменьшается количество накапливаемого батареей тока. В этом случае АКБ придётся менять.

Также стоит отметить, что кальциевый вид аккумуляторов чувствителен к стабильности электрических характеристик бортовой сети авто. Они не любят сильные перепады напряжения. Поэтому перед установкой такой батареи удостоверьтесь в исправности генератора, регулятора напряжения и других устройств в сети авто.

Кроме того, цена аккумуляторов кальциевого типа несколько выше, чем малосурьмянистых АКБ. Обычно аккумуляторные батареи Ca/Ca ставят на иномарки со стандартным набором опций. На таких авто стоит качественное электрооборудование и гарантируется стабильность электрических характеристик. При выборе этого вида аккумуляторов, не забывайте, что при их эксплуатации нельзя допускать глубокого разряда батареи.

Гибридные АКБ

На корпусе таких аккумуляторов можно встретить обозначение Ca+ или Ca/Sb. Решётки электродов в таких АКБ производятся по различным технологиям. Положительные изготавливаются с добавлением сурьмы, отрицательные по кальциевой технологии. Гибридные автомобильные аккумуляторы являются попыткой объединить плюсы этих типов батарей. В результате и характеристики получились средние.


Расход воды в гибридных АКБ меньше, чем у малосурьмянистых, но больше Ca/Ca. Зато этот вид аккумуляторов более устойчив к глубокому разряду и перепадам напряжения в электрической подсистеме автомобиля. Подробнее о в отдельной статье.

AGM и гелевые батареи

Аккумуляторы, выпускаемые по технологии AMG и GEL (обычно именуемые гелевыми), имеют электролит в связанном виде. Этот вид батарей стал попыткой решить проблему безопасной эксплуатации батарей. Ведь в классических батареях электролит может вытечь при переворачивании или повреждении корпуса. Серная кислота является агрессивным веществом и представляет опасность для организма человека. Поэтому проблему решили за счёт помещения электролита в связанное состояние и снижения его текучести. Кроме повышения безопасности в гелевых аккумуляторах, удалось уменьшить осыпание активной массы пластин.

Отличия между технологиями AMG и GEL заключается в способе связывания электролита. В АКБ вида AGM электролитом пропитывается пористое стекловолокно, которое находится между пластинами. AGM расшифровывается как Absorbent Glass Mat или в переводе на русский «абсорбирующий стекломатериал». По технологии GEL электролит переводят в гелеобразное состояние с помощью добавок соединений кремния. Часто аккумуляторы, выполненные по этим технологиям, обобщенно называют гелевыми. можете посмотреть в обзоре по ссылке.

Поскольку этот тип аккумуляторов не содержит жидкого электролита, они не боятся установки в наклонном положении. Но, несмотря на заявления маркетологов, эксплуатировать эти АКБ в перевёрнутом положении не следует. К преимуществам гелевых аккумуляторов обоих видов следует отнести низкий саморазряд и высокую устойчивость к вибрации. К преимуществам гелевых аккумуляторных батарей следует отнести ещё одно их свойство. Они могут выдавать высокий пусковой ток вне зависимости от заряда батареи и практически до полного разряда АКБ. После глубокого разряда они полностью восстанавливают свою ёмкость и могут выдержать большое количество циклов заряд-разряд (около 200).

А вот к процессу зарядки батареи гелевые АКБ очень чувствительны. Заряд этого вида аккумуляторов проводится меньшими значениями тока, чем в случае с классическими свинцово-кислотными моделями. Они требуют использования зарядного устройства со специальными возможностями.

Продавцы сегодня предлагают универсальные модели зарядных устройств, но относится к их выбору нужно внимательно. Вот статья о требованиях к . Также советуем прочитать материал о том, . Кроме того, АКБ гелевого типа требовательны к стабильности электрических параметров в бортовой сети авто.


На морозе гелевые аккумуляторы, также как и АКБ с жидким электролитом, могут капризничать. При отрицательных температурах падает проводимость гелеобразного электролита. Срок эксплуатации этого вида батарей в идеале составляет десять лет. Но на практике стоит рассчитывать на 6─7 лет. В некоторых случаях такие АКБ можно восстановить. О том, читайте в статье по ссылке. В автомобилях они используются меньше, чем остальные виды батарей. Их распространение ограничивает высокая стоимость. Гораздо чаще их можно встретить в ИБП (источники бесперебойного питания), в мотоциклетной технике, водных транспортных средствах. Гелевые батареи в автомобилях можно встретить на дорогих иномарках класса премиум и внедорожниках, где присутствует большое количество потребителей электрического тока. Читайте подробнее о .

Аккумуляторная батарея – это источник постоянного тока, который предназначен для накопления и хранения энергии. Подавляющее число типов аккумуляторных батарей основано на циклическом преобразовании химической энергии в электрическую, это позволяет многократно заряжать и разряжать батарею.

Еще в 1800 году Алессандро Вольта произвел поразительное открытие, когда опустил в банку, наполненную кислотой, две металлические пластины – медную и цинковую, после чего доказал, что по соединяющей их проволоке протекает электрический ток. Спустя более чем 200 лет, современные аккумуляторные батареи продолжают производить на основе открытия Вольта.

Виды аккумуляторных батарей

Со времени изобретения первого аккумулятора прошло не больше 140 лет и сейчас сложно представить современный мир без резервных источников питания на основе батарей. Аккумуляторы применяются всюду, начиная с самых безобидных бытовых устройств: пульты управления, переносные радиоприемники, фонари, ноутбуки, телефоны, и заканчивая системами безопасности финансовых учреждений, резервными источниками питания для центров хранения и передачи данных, космической отраслью, атомной энергетикой, связью и т. д.

Развивающийся мир нуждается в электрической энергии столь сильно, сколько человеку нужен кислород для жизни. Поэтому конструкторы и инженеры ежедневно ведут работу по оптимизации имеющихся типов аккумуляторов и периодически разрабатывают новые виды и подвиды.

Основные виды аккумуляторов приведены в таблице №1.

Применение

Обозначение

Рабочая температура, ºC

Напряжение элемента, В

Удельная энергия, Вт∙ч/кг

Литий-ионный (Литий-полимерный, литий-марганцевый, литий-железно-сульфидный, литий-железно-фосфатный, литий-железо-иттрий-фосфатный, литий-титанатный, литий-хлорный, литий-серный)

Транспорт, телекоммуникации, системы солнечной энергии, автономное и резервное электроснабжение, Hi-Tech, мобильные источники питания, электроинструмент, электромобили и т.д.

Li-Ion (Li-Co, Li-pol, Li-Mn, LiFeP, LFP, Li-Ti, Li-Cl, Li-S)

никель-солевой

Автомобильный транспорт, Ж\Д транспорт, Телекоммуникации, Энергетика, в том числе альтернативная, Системы накопления энергии

никель-кадмиевый

Электрокары, речные и морские суда, авиация

железо-никелевый

Резервное электропитание, тяговые для электротранспорта, цепи управления

никель-водородный

никель-металл-гидридный

электромобили, дефибрилляторы, ракетно-космическая техника, системы автономного энергоснабжения, радиоаппаратура, осветительная техника.

никель-цинковый

Фотоаппараты

свинцово-кислотный

Системы резервного питания, бытовая техника, ИБП, альтернативные источники питания, транспорт, промышленность и т.д.

серебряно-цинковый

Военная сфера

серебряно-кадмиевый

Космос, связь, военные технологии

цинк-бромный

цинк-хлорный

Таблица №1. Классификация аккумуляторных батарей.

Исходя из приведенных данных в таблице №1, можно прийти к выводу, что существует достаточно много видов аккумуляторов, отличных по своим характеристикам, которые оптимизированы для применения в разнообразных условиях и с различной интенсивностью. Применяя для производства новые технологии и компоненты, ученым удается достигать нужных характеристик для конкретной области применения, к примеру, для космических спутников, космических станций и другого космического оборудования были разработаны никель-водородные аккумуляторы. Конечно, в таблице приведены далеко не все типы, а лишь основные, которые получили распространение.

Современные системы резервного и автономного электропитания для промышленного и бытового сегмента основаны на разновидностях свинцово-кислотных, никель-кадмиевых (реже применяются железо-никелевый тип) и литий-ионных аккумуляторах, поскольку эти химические источники питания безопасны и имеют приемлемые технические характеристики и стоимость.

Свинцово-кислотные аккумуляторные батареи

Этот тип является самым востребованным в современном мире по причине универсальных особенностей и невысокой стоимости. Благодаря наличию большого количества разновидностей, свинцово-кислотные аккумуляторы применяется в областях систем резервного питания, системах автономного электроснабжения, солнечных электростанций, ИБП, различных видах транспорта, связи, системах безопасности, различных видах портативных устройств, игрушках и т. д.

Принцип действия свинцово-кислотных батарей

Основа работы химических источников питания основана на взаимодействии металлов и жидкости – обратимой реакции, которая возникает при замыкании контактов положительных и отрицательных пластин. Свинцово-кислотные аккумуляторы, как понятно из названия, состоят из свинца и кислоты, где положительно заряженными пластинами является свинец, а отрицательно заряженными – оксид свинца. Если подключить к двум пластинам лампочку, цепь замкнется и возникнет электрический ток (движение электронов), а внутри элемента возникнет химическая реакция. В частности, происходит коррозия пластин батареи, свинец покрывается сульфатом свинца. Таким образом, в процессе разряда аккумулятора на всех пластинах будет образовываться налет из сульфата свинца. Когда аккумулятор полностью разряжен, его пластины покрыты одинаковым металлом – сульфатом свинца и имеют практически одинаковый заряд относительно жидкости, соответственно, напряжение батареи будет очень низким.

Если к батарее подключить зарядное устройство к соответствующим клеммам и включить его, ток будет протекать в кислоте в обратном направлении. Ток будет вызывать химическую реакцию, молекулы кислоты – расщепляться и за счет этой реакции будет происходить удаление сульфата свинца с положительных и отрицательных пластилин батареи. В финальной стадии зарядного процесса пластины будут иметь первозданный вид: свинец и оксид свинца, что позволит им снова получить разный заряд, т. е. батарея будет полностью заряжена.

Однако на практике все выглядит немного иначе и пластины электродов очищаются не полностью, поэтому аккумуляторы имеют определенный ресурс, по достижении которого емкость снижается до 80-70% от изначальной.

Рисунок №3. Электрохимическая схема свинцово-кислотного аккумулятора (VRLA).

Типы свинцово-кислотных батарей

    Lead–Acid , обслуживаемые – 6, 12В батареи. Классические стартерные аккумуляторы для двигателей внутреннего сгорания и не только. Нуждаются в регулярном обслуживании и вентиляции. Подвержены высокому саморазряду.

    Valve Regulated Lead–Acid (VRLA) , необслуживаемые – 2, 4, 6 и 12В батареи. Недорогие аккумуляторы в герметизированном корпусе, которые можно использовать в жилых помещениях, не требуют дополнительной вентиляции и обслуживания. Рекомендованы для использования в буферном режиме.

    Absorbent Glass Mat Valve Regulated Lead–Acid (AGM VRLA) , необслуживаемые – 4, 6 и 12В батареи. Современные аккумуляторы свинцово-кислотного типа с абсорбированным электролитом (не жидкий) и стекловолоконными разделительными сепараторами, которые значительно лучше сохраняют свинцовые пластины, не давая им разрушаться. Такое решение позволило значительно снизить время заряда AGM батарей, поскольку зарядный ток может достигать 20-25, реже 30% от номинальной емкости.

    Аккумуляторы AGM VRLA имеют множество модификаций с оптимизированными характеристиками для циклического и буферного режимов работы: Deep – для частых глубоких разрядов, фронт-терминальные – для удобного расположения в телекоммуникационных стойках, Standard – общего назначения, High Rate – обеспечивают лучшую разрядную характеристику до 30% и подходят для мощных источников бесперебойного питания, Modular – позволяют создавать мощные батарейные кабинеты и т. д.

    Рисунок №4.

    GEL Valve Regulated Lead–Acid (GEL VRLA) , необслуживаниемые – 2, 4, 6 и 12В батареи. Одна из последних модификаций свинцово-кислотного типа аккумуляторов. Технология основана на применение гелеобразного электролита, который обеспечивает максимальный контакт с отрицательными и положительными пластинами элементов и сохраняет однообразную консистенцию по всему объему. Данный тип аккумуляторов требует «правильного» зарядного устройства, которое обеспечит требуемый уровень тока и напряжения, лишь в этом случае можно получить все преимущества по сравнению с AGM VRLA типом.

    Химические источники питания GEL VRLA, как и AGM, имеют множество подвидов, которые наилучшим образом подходят для определенных режимов работы. Самыми распространенными являются серии Solar – используются для систем солнечной энергии, Marine – для морского и речного транспорта, Deep Cycle – для частых глубоких разрядов, фронт-терминальные – собраны в специальных корпусах для телекоммуникационных систем, GOLF – для гольф-каров, а также для поломоечных машин, Micro – небольшие аккумуляторы для частого использования в мобильных приложениях, Modular – специальное решение по созданию мощных аккумуляторных банков для накопления энергии и т. д.

    Рисунок №5.

    OPzV , необслуживаемые – 2В батареи. Специальные свинцово-кислотные элементы типа OPZV произведены с применением трубчатых пластин анода и сернокислотным гелеобразным электролитом. Анод и катод элементов содержат дополнительный металл – кальций, благодаря которому повышается стойкость электродов к коррозии и увеличивается срок службы. Отрицательные пластины – намазные, эта технология обеспечивает лучший контакт с электролитом.

    Аккумуляторы OPzV устойчивы к глубоким разрядам и обладают длительным сроком службы до 22 лет. Как правило, для изготовления подобных элементов питания применяются только лучшие материалы, чтобы обеспечить высокую эффективность работы в циклическом режиме.

    Применение OPzV аккумуляторов востребовано в телекоммуникационных установках, системах аварийного освещения, источниках бесперебойного питания, системах навигации, бытовых и промышленных системах накопления энергии и солнечной электрогенерации.


    Рисунок №6. Строение OPzV аккумулятора EverExceed.

    OPzS , малообслуживаемые – 2, 6, 12В батареи. Стационарные заливные свинцово-кислотные аккумуляторы OPzS производятся с трубчатыми пластинами анода с добавлением сурьмы. Катод также содержит небольшое количество сурьмы и представляет собой намазной решетчатый тип. Анод и катод разделены микропористыми сепараторами, которые предотвращают короткое замыкание. Корпус аккумуляторов выполнен из специального ударопрочного, устойчивого к химическому воздействию и огню прозрачного пластика, а вентилируемые клапаны относятся к пожаробезопасному типу и обеспечивают защиту от возможного попадания пламени и искр.

    Прозрачные стенки позволяют удобно контролировать уровень электролита при помощи отметок минимального и максимального значения. Специальная структура клапанов дает возможность без их снятия доливать дистиллированную воду и промерять плотность электролита. В зависимости от нагрузки, долив воды осуществляется раз в один – два года.

    Аккумуляторные батареи типа OPzS обладают самыми высокими характеристиками среди всех других видов свинцово-кислотных батарей. Срок службы может достигать 20 – 25 лет и обеспечивать ресурс до 1800 циклов глубокого 80% разряда.

    Применение подобных батарей необходимо в системах с требованиями среднего и глубокого разряда, в т.ч. где наблюдаются пусковые токи средней величины.

    Рисунок №7.

Характеристики свинцово-кислотных аккумуляторов

Анализируя приведенные в таблице №2 данные, можно прийти к выводу, что свинцово-кислотные аккумуляторы обладают широким выбором моделей, которые подходят для различных режимов работы и условий эксплуатации.

AGM VRLA

GEL VRLA

Емкость, Ампер/час

Напряжение, Вольт

Оптимальная глубина разряда, %

Допустимая глубина разряда, %

Циклический ресурс, D.O.D.=50%

Оптимальная температура, °С

Диапазон рабочих температур, °С

Срок службы, лет при +20°С

Саморазряд, %

Макс. ток заряда, % от емкости

Минимальное время заряда, ч

Требования к обслуживанию

1 – 2 года

Средняя стоимость, $, 12В/100Ач.

Таблица №2. Сравнительные характеристики по видам свинцово-кислотных батарей.

Для анализа использовались усредненные данные более чем 10-ти производителей батарей, продукция которых представлена на рынке Украины в течение длительного времени и успешно применяется во многих областях (EverExceed, B.B. Battery, CSB, Leoch, Ventura, Challenger, C&D Techologies, Victron Energy, SunLight, Troian и другие).

Литий-ионные (литиевые) аккумуляторные батареи

История прохождения происхождения уходит в 1912 год, когда Гилберт Ньютон Льюис работал над вычислением активностей ионов сильных электролитов и проводил исследования электродных потенциалов целого ряда элементов, включая литий. С 1973 года работы были возобновлены и в результате появились первые элементы питания на основе лития, которые обеспечивали только один цикл разряда. Попытки создать литиевый аккумулятор затруднялись активностью свойств лития, которые при неправильных режимах разряда или заряда вызывали бурную реакцию с выделением высокой температуры и даже пламени. Компания Sony выпустила первые мобильные телефоны с подобными аккумуляторами, но была вынуждена отозвать продукцию обратно после нескольких неприятных инцидентов. Разработки не прекращались и в 1992 году появились первые «безопасные» аккумуляторы на основе ионов лития.

Аккумуляторы литий-ионного типа обладают высокой плотностью энергии и благодаря этому при компактном размере и легком весе обеспечивают в 2-4 раза большую емкость по сравнению со свинцово-кислотными аккумуляторами. Несомненно, большим достоинством литий-ионных батарей является высокая скорость полной 100% перезарядки в течение 1-2 часов.

Li-ion батареи получили широкое применение в современной электронной технике, автомобилестроении, системах накопления энергии, солнечной генерации электроэнергии. Крайне востребованы в высокотехнологичных устройствах мультимедиа и связи: телефонах, планшетных компьютерах, ноутбуках, радиостанциях и т. д. Современный мир сложно представить без источников питания литий-ионного типа.

Принцип действия литиевых (литий-ионных) батарей

Принцип работы заключается в использовании ионов лития, которые связаны молекулами дополнительных металлов. Обычно, в дополнение к литию применяются литийкобальтоксид и графит. При разряде литий-ионного аккумулятора происходит переход ионов от отрицательного электрода (катода) к положительному (аноду) и наоборот при заряде. Схема аккумулятора предполагает наличие разделительного сепаратора между двумя частями элемента, это необходимо для предотвращения самопроизвольного перемещения ионов лития. Когда цепь аккумулятора замкнута и происходит процесс заряда или разряда, ионы преодолевают разделительный сепаратор стремясь к противоположно заряженному электроду.

Рисунок №8. Электрохимическая схема литий-ионного аккумулятора.

Благодаря своей высокой эффективности, литий-ионные аккумуляторы получили бурное развитие и множество подвидов, например, литий-железо-фосфатные аккумуляторы (LiFePO4). Ниже приведена графическая схема работы этого подтипа.

Рисунок №9. Электрохимическая схема процесса разряда и разряда LiFePO4 батареи.

Типы литий-ионных аккумуляторов

Современные литий-ионные аккумуляторы имеют множество подтипов, основная разница которых заключается в составе катода (отрицательно заряженного электрода). Также может изменяться состав анода для полной замены графита или использования графита с добавлением других материалов.

Различные виды литий-ионных аккумуляторов обозначаются по их химическому разложению. Для рядового пользователя это может быть несколько сложно, поэтому каждый тип будет описан максимально подробно, включая его полное название, химическое определение, аббревиатуру и краткое обозначение. Для удобства описания будет использоваться сокращенное название.

    Литий кобальт оксид (LiCoO2) – Обладает высокой удельной энергией, что делает литий-кобальтовый аккумулятор востребованным в компактных высокотехнологичных устройствах. Катод батареи состоит из оксида кобальта, тогда как анод – из графита. Катод имеет слоистую структуру и во время разряда ионы лития перемещаются от анода к катоду. Недостатком этого типа является относительно короткий срок службы, невысокая термическая стабильность и лимитированная мощность элемента.

    Литий-кобальтовые батареи не могут разряжаться и заряжаться током, превосходящим номинальную емкость, поэтому аккумулятор с емкостью 2,4Ач может работать с током 2,4А. Если для заряда будет применяться большая сила тока, то это вызовет перегрев. Оптимальный зарядный ток составляет 0,8C, в данном случае 1,92А. Каждый литий-кобальтовый аккумулятор комплектуется схемой защиты, которая ограничивает заряд и скорость разряда и лимитирует ток на уровне 1C.

    На графике (Рис. 10) отражены основные свойства литий-кобальтовых аккумуляторов с точки зрения удельной энергии или мощности, удельная мощность или способность обеспечивать высокий ток, безопасности или шансы воспламенения при высокой нагрузке, рабочая температура окружающей среды, срок службы и циклический ресурс, стоимость.

    Рисунок №10.

    Литий Оксид Марганца (LiMn2O4, LMO) – первая информация об использовании лития с марганцевыми шпинелями была опубликована в научных докладах 1983 года. Компания Moli Energy в 1996 году выпустила первые партии аккумуляторов на основе литий-оксид-марганца в качестве материала катода. Такая архитектура формирует трехмерные структуры шпинели, что улучшает поток ионов к электроду, тем самым снижая внутреннее сопротивление и повышая возможные токи заряда. Также преимущество шпинели в термической стабильности и повышенной безопасности, однако циклический ресурс и срок службы ограничен.

    Низкое сопротивление обеспечивает возможность быстрого заряда и разряда литий-марганцевого аккумулятора с высоким током до 30А и кратковременно до 50А. Применяется для мощных электроинструментов, медицинского оборудования, а также гибридных и электрических транспортных средств.

    Потенциал литий-марганцевых аккумуляторов примерно на 30% ниже по сравнению с литий-кобальтовыми батареями, однако эта технология обладает примерно на 50% лучшими свойствами, чем аккумуляторы на основе никелевых химических компонентов.

    Гибкость конструкции позволяет инженерам оптимизировать свойства батареи и достичь длительного срока службы, высокой емкости (удельная энергия), возможности обеспечивать максимальный ток (удельная мощность). Например, с длительным сроком эксплуатации типоразмер элемента 18650 имеет емкость 1,1Ач, тогда как элементы, оптимизированные на повышенную емкость, – 1,5Ач, но при этом они имеют меньший срок службы.

    На графике (Рис. 12) отраженны не самые впечатляющие характеристики литий-марганцевых аккумуляторов, однако современные разработки позволили существенно повысить эксплуатационных характеристики и сделать этот тип конкурентным и широко применяемым.

    Рисунок №11.

    Современные аккумуляторы литий-марганцевого типа могут производиться с добавлениями других элементов – литий-никель-марганец-кобальт оксид (NMC), подобная технология существенно продлевает срок службы и повышает показатели удельной энергии. Этот состав привносит лучшие свойства из каждой системы, так называемые LMO (NMC) применяются для большинства электромобилей, таких как Nissan, Chevrolet, BMW и т. д.

    Литий-Никель-Марганец-Кобальт оксид (LiNiMnCoO2 или NMC) – ведущие производители литий-ионных батарей сосредоточились на сочетании никеля-марганца-кобальта в качестве материалов катода (NMC). Похожий на литий-марганцевый тип, эти аккумуляторы могут быть адаптированы для достижения показателей высокой удельной энергии или высокой удельной мощности, однако, не одновременно. К примеру, элемент NMC типа 18650 в состоянии умеренной нагрузки имеет емкость 2,8Ач и может обеспечить максимальный ток 4-5А; NMC элемент, оптимизированный к параметрам повышенной мощности, имеет всего 2Втч, но может обеспечить непрерывный ток разряда до 20А. Особенность NMC заключается в сочетании никеля и марганца, в качестве примера можно привести поваренную соль, в которой основные ингредиенты натрий и хлорид, которые в отдельности являются токсичными веществами.

    Никель известен своей высокой удельной энергией, но низкой стабильностью. Марганец имеет преимущество формирования структуры шпинели и обеспечивает низкое внутреннее сопротивление, но при этом обладает низкой удельной энергией. Комбинируя эти два металла, можно получать оптимальные характеристика NMC аккумулятора для разных режимов эксплуатации.

    NMC аккумуляторы прекрасно подходят для электроинструмента, электровелосипедов и других силовых агрегатов. Сочетание материалов катода: треть никеля, марганца и кобальта обеспечивают уникальные свойства, а также снижают стоимость продукта в связи с уменьшением содержания кобальта. Другие подтипы, как NCM, CMN, CNM, MNC и MCN имеют отличное соотношение тройки металлов от 1/3-1/3-1/3. Обычно, точное соотношение держится производителем в секрете.

    Рисунок №12.

    Литий-Железо-Фосфатные (LiFePO4) – в 1996 в университете штата Техас (и другими участниками) был применен фосфат в качестве катодного материала для литиевых аккумуляторов. Литий-фосфат предлагает хорошие электрохимические характеристики с низким сопротивлением. Это стало возможным с нано-фосфатом материала катода. Основными преимуществами являются высокий протекающий ток и длительный срок службы к тому же, хорошая термическая стабильность и повышенная безопасность.

    Литий-железо-фосфатные аккумуляторы терпимее к полному разряду и менее подвержены «старению», чем другие литий-ионные системы. Также LFP более устойчивы к перезаряду, но как и в других аккумуляторах литий-ионного типа, перезаряд может вызвать повреждение. LiFePO4 обеспечивает очень стабильное напряжение разряда – 3,2В, это же позволяет использовать всего 4 элемента для создания батареи стандарта 12В, что в свою очередь позволяет эффективно заменять свинцово-кислотные батареи. Литий-железо-фосфатные аккумуляторы не содержат кобальт, это существенно снижает стоимость продукта и делает его более экологически чистым. В процессе разряда обеспечивает высокий ток, а также может быть заряжен номинальным током всего за один час до полной емкости. Эксплуатация при низких температурах окружающей среды снижает производительность, а температура свыше 35ºС – несколько сокращается срок службы, но показатели намного лучше, чем у свинцово-кислотных, никель-кадмиевых или никель-металлогидридных аккумуляторов. Литий-фосфат имеет больший саморазряд, чем другие литий-ионные аккумуляторы, которые могут вызвать потребность балансировки батарейных кабинетов.

    Рисунок №13.

    Литий-Никель-Кобальт-Оксид Алюминия (LiNiCoAlO2) – литий-никель-кобальто-оксид алюминиевые батареи (NCA) появились в 1999 году. Этот тип обеспечивает высокую удельную энергию и достаточную удельную мощность, а также длительный срок службы. Однако существуют риски воспламенения, в следствие чего был добавлен алюминий, который обеспечивает более высокую стабильность электрохимических процессов, протекающих в аккумуляторе при высоких токах разряда и заряда.

    Рисунок №14.

    Литий-титанат (Li4Ti5O12) – аккумуляторы с анодами из литий-титаната были известны с 1980-х годов. Катод состоит из графита и имеет сходство с архитектурой типичной литий-металлической батареи. Литий-титанат имеет напряжение элемента 2,4В, может быть быстро заряжен и обеспечивает высокий разрядный ток 10C, который в 10 раз превышает номинальную емкость батареи.

    Литий-титанатные аккумуляторы отличаются повышенным циклическим ресурсом по сравнению с другими Li-ion видами батарей. Обладают высокой безопасностью, а также способны работать при низких температурах (до –30ºC) без ощутимого снижения рабочих характеристик.

    Недостаток заключается в достаточно высокой стоимости, а также в небольшом показателе удельной энергии, порядка 60-80Втч/кг, что вполне сопоставимо с никель-кадмиевыми аккумуляторами. Области применения: электрические силовые агрегаты и источники бесперебойного питания.

    Рисунок №15.

    Литий-полимерные аккумуляторы (Li-pol, Li-polymer, LiPo, LIP, Li-poly) – литий полимерные аккумуляторы отличаются от литий-ионных тем, что в них используется специальный полимерный электролит. Возникший ажиотаж к этому виду батарей с 2000-х годов длится до сегодняшнего времени. Основан он не безосновательно, т. к. при помощи специальных полимеров удалось создать батарею без жидкого или гелеобразного электролита, это дает возможность создавать батареи практически любой формы. Но основная проблема заключается в том, что твердый полимерный электролит обеспечивает плохую проводимость при комнатной температуре, а лучшие свойства демонтирует в разогретом состоянии до 60°С. Все попытки ученых обнаружить решение этой задачи оказали тщетны.

    В современных литий-полимерных батареях применяется небольшое количество гелевого электролита для лучшей проводимости при нормальной температуре. А принцип работы построен на одном из описанных выше типов. Самым распространенным является литий-кобальтовый тип с полимерным гелеобразным электролитом, который применяется в большинстве случаев.

    Основная разница между литий-ионными аккумуляторами и литий-полимерными заключается в том, что микропористый полимерный электролит заменяется традиционным разделительным сепаратором. Литий-полимер имеет немного больший показатель удельной энергии и дает возможность создавать тонкие элементы, но стоимость на 10-30% выше, чем литий-ионных. Существенная разница есть и в структуре корпуса. Если для литий-полимерных применяется тонкая фольга, которая дается возможность создавать настолько тонкие элементы питания, что они похожи на кредитные карты, то литий-ионные собираются в жестком металлическом корпусе для плотной фиксации электродов.

    Рисунок №17. Внешний вид Li-polymer аккумулятора для мобильного телефона.

Характеристики литий-ионных аккумуляторов

В таблице отсутствует максимальная емкость элементов, т. к. технология литий-ионных аккумуляторов не позволяет производить мощные отдельные элементы. Когда необходима высокая емкость или постоянный ток, батареи соединятся параллельно и последовательно при помощи перемычек. Состояние обязательно должна контролировать система батарейного мониторинга. Современные батарейные кабинеты для ИБП и солнечных электростанций на основе литиевых элементов могут достигать напряжения 500-700В постоянного тока с емкостью около 400А/ч, а также емкости 2000 – 3000Ач с напряжением 48 или 96В.

Параметр \ Тип

Напряжение элемента, Вольт;

Оптимальная температура, °С;

Срок службы, лет при +20°С;

Саморазряд в мес., %

Макс. ток разряда

Макс. ток заряда

Минимальное время заряда, ч

Требования к обслуживанию

Уровень стоимости

Никель-кадмиевые аккумуляторные батареи

Изобретателем является шведский ученый Вальдемар Юнгнер, который запатентовал технологию производства никель кадмиевого типа в 1899 году. D 1990 году возник патентный спор с Эдисоном, который Юнгнер проиграл в силу того, что не владел таким средствами, как его оппонент. Компания «Ackumulator Aktiebolaget Jungner», основанная Вальдемаром, оказалась на грани банкротства, однако, сменив название на «Svenska Ackumulator Aktiebolaget Jungner», предприятие все же продолжило свое развитие. В настоящее время предприятие, основанное разработчиком, носит название «SAFT AB» и производит одни из самых надежных никель-кадмиевых аккумуляторов в мире.

Никель-кадмиевые аккумуляторы относятся к очень долговечному и надежному типу. Существуют обслуживаемые и необслуживаемые модели с емкостью от 5 до 1500Ач. Обычно поставляются в виде сухо-заряженных банок без электролита с номинальным напряжением 1,2В. Несмотря на схожесть конструкции со свинцово-кислотными, никель- кадмиевые батареи имеют ряд существенных преимуществ в виде стабильной работы при температуре от –40°С, возможности выдерживать высокие пусковые токи, а также оптимизированы моделями для быстрого разряда. Ni-Cd батареи устойчивы к глубокому разряду, перезаряду и не требуют моментального заряда как свинцово-кислотный тип. Конструктивно производятся в ударопрочном пластике и хорошо переносят механические повреждения, не боятся вибрации и т.п.

Принцип действия никель-кадмиевых батарей

Щелочные аккумуляторы, электроды которых состоят из гидрата окиси никеля с добавлениями графита, окиси бария и порошкового кадмия. В качестве электролита, как правило, выступает раствор с 20%-ным содержанием калия и добавлением моногидрата лития. Пластины разделены изолирующими сепараторами во избежании замыкания, одна отрицательно заряженная пластина расположена между двумя положительно заряженными.

В процессе разряда никель-кадмиевой батареи происходит взаимодействие между анодом с гидратом окиси никеля и ионами электролита, образуя гидрат закиси никеля. В это же время катод из кадмия образует гидрат окиси кадмия, тем самым создавая разность потенциалов до 1,45В обеспечивая напряжение внутри аккумулятора и во внешней замкнутой цепи.

Процесс заряда никель-кадмиевых аккумуляторов сопровождается окислением активной массы анодов и переходом гидрата закиси никеля в гидрат окиси никеля. Одновременно катод восстанавливается с образованием кадмия.

Достоинством принципа действия никель-кадмиевой батареи является то, что все составляющие, которые образуются в процессе циклов разряда и заряда, почти не растворяются в электролите, а также не вступают в какие-либо побочные реакции.

Рисунок №16. Строение Ni-Cd аккумулятора.

Типы никель-кадмиевых аккумуляторов

В настоящее время батареи Ni-Cd используют чаще всего в промышленности, где требуется обеспечивать питанием разнообразные приложения. Некоторые производители предлагают несколько подвидов никель-кадмиевых аккумуляторов, которые обеспечивают наилучшую работу в определенных режимах:

    время разряда 1,5 – 5 часов и более – обслуживаемые батареи;

    время разряда 1,5 – 5 часов и более – необслуживаемые батареи;

    время разряда 30 – 150 минут – обслуживаемые батареи;

    время разряда 20 – 45 минут – обслуживаемые батареи;

    время разряда 3 – 25 минут – обслуживаемые батареи.

Характеристики никель-кадмиевых аккумуляторов

Параметр \ Тип

Никель-кадмиевые / Ni-Cd

Емкость, Ампер/час;

Напряжение элемента, Вольт;

Оптимальная глубина разряда, %;

Допустимая глубина разряда, %;

Циклический ресурс, D.O.D.=80%;

Оптимальная температура, °С;

Диапазон рабочих температур, °С;

Срок службы, лет при +20°С;

Саморазряд в мес., %

Макс. ток разряда

Макс. ток заряда

Минимальное время заряда, ч

Требования к обслуживанию

Малообслуживаемые или необслуживанемые

Уровень стоимости

средняя (300 – 400$ 100Ач)

Высокие технические характеристики делают этот тип аккумуляторных батарей очень привлекательным для решения производственных задач, когда требуется высоконадежный источник резервного питания с длительным сроком службы.

Никелево-железные аккумуляторные батареи

Впервые были созданы Вальдемаром Юнгнером в 1899 году, когда он пытался найти более дешевый аналог кадмию в составе никель-кадмиевых батарей. После долгих испытаний Юнгнер отказался от применения железа, т. к. заряд осуществлялся слишком медленно. Несколькими годами позднее, Томас Эдисон создал никель-железный аккумулятор, который осуществлял питание электромобилей «Baker Electric» и «Detroit Electric».

Дешевизна производства позволили никель-железным аккумуляторам стать востребованными в электротранспорте в качестве тяговых батарей, также применяются для электрификации пассажирских вагонов, питания цепей управления. В последние годы о никель-железных аккумуляторах заговорили с новой силой, т. к. они не содержат токсичных элементов вроде свинца, кадмия, кобальта и т. д. В настоящее время некоторые производители продвигают их для систем возобновляемой энергетики.

Принцип действия никелево-железных батарей

Аккумуляция электроэнергии происходит при помощи никель оксида-гидроксида, применяемого в качестве положительных пластин, железа – в качестве отрицательных пластин и жидкого электролита в виде едкого калия. Никелевые стабильные трубки или «карманы» содержат активное вещество

Никелево-железный тип очень надежный, т.к. выдерживает глубокие разряды, частые перезаряды, а также может находится в недозаряженном состоянии, что очень пагубно для свинцово-кислотных батарей.

Характеристики никелево-железных аккумуляторов

Параметр \ Тип

Никель-кадмиевые / Ni-Cd

Емкость, Ампер/час;

Напряжение элемента, Вольт;

Оптимальная глубина разряда, %;

Допустимая глубина разряда, %;

Циклический ресурс, D.O.D.=80%;

Оптимальная температура, °С;

Диапазон рабочих температур, °С;

Срок службы, лет при +20°С;

Саморазряд в мес., %

Макс. ток разряда

Макс. ток заряда

Минимальное время заряда, ч

Требования к обслуживанию

Малообслуживаемые

Уровень стоимости

средняя, низкая

Использованные материалы

Исследования компании Boston Consulting Group

Техническая документация ТМ Bosch, Panasonic, EverExceed, Victron Energy, Varta, Leclanché, Envia, Kokam, Samsung, Valence и других.

Под аккумуляторной батареей следует понимать источник электрического тока, который состоит из нескольких элементов питания. Такое совмещение элементов дает возможность получить силу тока или напряжение намного больше, в зависимости от параллельного или последовательного способа подключения.

На сегодняшний день есть несколько типов аккумуляторный батарей, которые отличаются друг от друга составом электролита и материалом электродов. Большинство людей слышали ранее и знают, что существуют всевозможные никель-металлогидридные, никель-кадмиевые, литиево-ионные, свинцово-кислотные аккумуляторные батареи. Однако из всего этого разнообразия на автомобилях в качестве стартерных батарей применяют исключительно свинцовые . Такой выбор осуществлен неспроста, ведь эти батареи обладают способностью отдавать за короткий промежуток времени большой ток, в то время как другие батареи с этим не справляются. Но наряду с этим стоит сказать, что и свинец и кислота – крайне вредные вещества, поэтому автолюбителям приходится с этим мириться. Что касается корпусов батарей, то они выполнены из кислотостойкой пластмассы.

Типы автомобильных аккумуляторных батарей

В современном производстве аккумуляторов для электродов используют не чистый свинец, а с различными добавками, которые делят на несколько типов.

· Сурьмянистые или традиционные аккумуляторы;

· Малосурьмянистые аккумуляторы;

· Кальциевые аккумуляторы;

· Гибридные аккумуляторы;

· Гелевые или AGM аккумуляторы ;

· Щелочные аккумуляторы;

· Литиево-ионные аккумуляторы.

Сурьмянистые аккумуляторные батареи

Батареи такого типа в составе пластин содержат ≥5% сурьмы. Зачастую такие батареи называют традиционными или классическими. Однако данное название уже не так актуально, потому что современные классические аккумуляторы содержат гораздо меньше сурьмы.

Сурьма добавляется в свинец для повышения прочности пластин. Также эта добавка способствует резкому усилению, ускорению процесса электролиза, начинающегося уже при 12 вольтах. Выделяющиеся газы (кислород и водород) создают впечатление кипящей воды. Вследствие испарения воды в большом количестве, концентрация электролита меняется и электроды (их верхние края) оголяются. В качестве компенсации в аккумулятор заливается дистиллированная вода.

С повышенным содержанием сурьмы – это часто обслуживаемые аккумуляторы, так как необходимо не менее раза в месяц выполнять проверку плотности электролита в батарее, а также доливать воду.

Сегодня батареи такого типа не устанавливают на машины, потому как уже давно разработаны и эксплуатируются другие, более инновационные типы . Сурьмянистые аккумуляторы еще работают на стационарных установках, где неприхотливость источника питания важнее за иные вопросы. Автомобильные же аккумуляторы производятся без сурьмы или с малым ее содержанием.

Малосурьмянистые аккумуляторные батареи

Стараясь достичь меньшего «выкипания» воды, разработчики начали изготавливать аккумуляторные батареи с уменьшенным количеством сурьмы (меньше 5%). Данный фактор исключил необходимость постоянно следить за уровнем электролита. Также значительно уменьшился уровень саморазряда батареи при хранении.

Подобного типа называют необслуживаемыми, аргументируя это тем, что они не требуют определенного ухода. Конечно, термин «необслуживаемый» скорее маркетинговый, потому как полностью избавиться от проблемы «выкипания» воды не получилось. Вода из электролита понемножку «выкипает» все равно, хоть и в меньших количествах.

Но у таких батарей есть огромнейший плюс. Они абсолютно нетребовательны к электрооборудованию машины. Даже перепады напряжения бортовой электросети не провоцируют изменения характеристик данной батареи, в отличие от, скажем, гелевых или кальциевых аккумуляторов.

Малосурьмянистые зачастую используются для установки на отечественные автомобили, которые на сегодняшний день не могут обеспечить стабильное напряжение бортовой сети. Также стоит сказать, что аккумуляторы этого типа намного дешевле тех же гелевых батарей.

Кальциевые аккумуляторные батареи

Еще одно решение, позволившее снизить «выкипание» воды – это использование в решетках электродов другого материала, а не сурьмы. Самым оптимальным решением стал кальций. Как правило, данного типа носят маркировку «Ca/Ca», что значит содержание кальция в пластинах обоих полюсов. Также зачастую в состав пластин добавляют малое количество серебра – это позволяет снизить внутреннее сопротивление батареи и повысить энергоемкость и КПД аккумулятора.

Использование кальция дало возможность существенно уменьшить газовыделение и потерю воды. Фактически, утрата воды стала столь незначительна, что необходимость проверки плотности утратила свою актуальность. Данные аккумуляторы по праву называются необслуживаемыми.

Также кальциевые , кроме слабого «выкипания» воды, располагают сниженным уровнем саморазряда, что позволяет этим батареям сохранять свои свойства долгое время.

Применение кальция вместо сурьмы дало возможность значительно повысить напряжение электролиза воды до 16 Вольт. Но, несмотря на все указанные плюсы данной батареи, она имеет еще и минусы:

· Капризность по отношению к переразряду. Достаточно несколько раз сильно разрядить батарею и уровень энергоемкости необратимо снижается, то есть количество тока резко уменьшается. Как правило, после такого инцидента батарея уже не может выполнять свои функции, и ее меняют. Этот минус следует назвать самым главным недостатком аккумулятора данного типа.

· Кальциевые батареи крайне чувствительны к бортовой сети машины – плохо переносят резкие перепады напряжения. Стоит учесть этот нюанс перед приобретением батареи.

· Также минус аккумулятора в его очень высокой стоимости, хотя это скорее уже не недостаток, а вынужденная плата за качество.

Зачастую кальциевые аккумуляторы устанавливают на иномарки среднего диапазона, то есть на автомобили с качественным электрооборудованием, где стабильность гарантирована. Покупая кальциевую батарею, следует учесть, что она гораздо требовательнее малосурьмянистой, но должный этого типа станет залогом успеха, и вы получите надежный источник питания.

Гибридные аккумуляторные батареи

Как правило, такие аккумуляторы обозначаются «Ca+». Пластины электродов таких батарей выполнены по разным технологиям: положительные пластины – малосурьмянистые, отрицательные пластины - кальциевые. Такое совмещение дает возможность объединить положительные качества этих аккумуляторных батарей. «Выкипание» воды у таких батарей намного меньше, чем у малосурьмянистых, но больше, чем у кальциевых. Зато устойчивость к переразрядам и перезарядам значительно выше.

Характеристики гибридных аккумуляторных батарей позволяют им занимать место между малосурьмянистыми аккумуляторами и кальциевыми батареями.

Гелевые и AGM аккумуляторные батареи

И AGM аккумуляторы содержат электролит в связанном состоянии, а не в «классическом» жидком виде. Такое гелеобразное состояние электролита и повлекло определение названия типа батареи.

Инженеры в течение долгих лет искали выходы из множества проблем с аккумуляторными батареями. Самой важной проблемой всегда было осыпание активного вещества с пластин-электродов и ее решили с помощью добавления в свинец присадки – сурьмы или кальция. Также важной задачей стало обеспечение безопасности аккумуляторов, потому как электролит – это раствор серной кислоты, мог запросто вытечь из корпуса батареи при повреждениях. Каждый знает, насколько агрессивная серная кислота. Надо было найти способ исключить возможность утечки кислоты вследствие тех или иных повреждений корпуса . Данную проблему разработчики решили путем преобразования жидкого электролита в гелеобразное состояние. Гель – вещество плотное и менее текучее, что решило сразу две задачи – пластины не осыпались, так как плотный гель их удерживал, и сам электролит не вытекал.

И , и AGM батареи имеют гелеобразный электролит. Их отличие лишь в том, что АGM имеет еще и пористый материал между пластинами, который дополнительно удерживает электролит и защищает пластины от осыпания. Аббревиатура «AGM» расшифровывается следующим образом - Absorbent Glass Mat (абсорбирующий стекломатериал). и AGM батарея имеют похожие характеристики, поэтому под гелевыми батареями будут иметься в виду и AGM.

Благодаря фиксации геля в аккумуляторе, батарея не боится наклонов. Более того, производители говорят, что такую батарею можно запросто эксплуатировать в любом положении. Но, несмотря на такие громкие высказывания, не стоит эксплуатировать подобный тип батарей в, скажем, перевернутом состоянии.

Замечательная виброустойчивость - это отнюдь не единственный плюс гелевых аккумуляторов. Такие батареи обладают низкой скоростью саморазряда, что позволяет хранить их очень долго. Хранить этот тип батарей следует в заряженном состоянии. Аккумуляторы гелевые обладают прекрасной способностью – они могут выдать высокий ток вплоть до разряда, причем абсолютно не боятся переразряда.

Если разряд таких аккумуляторов им не страшен, то заряд подобных батарей – фактор более капризный. Такие аккумуляторы недопустимо заряжать в ускоренном ритме. Процесс зарядки необходимо выполнять слабым током с использованием специальных зарядных устройств, которые подходят только гелевым аккумуляторам. Сейчас на рынке можно купить универсальное зарядное устройство, способное, по заверению изготовителя, заряжать любой тип батарей, но предпочтение стоит все же отдать специальному устройству.

Но, к пребольшому сожалению, аккумуляторы гелевые автомобильные в условиях низких температур ведут себя намного хуже. При снижении температуры гель частично утрачивает свою электропроводимость.

Абсолютная герметичность, относительная виброустойчивость, фактическая необслуживаемость позволяет применять гелевые батареи на той технике, на которую классический аккумулятор нельзя устанавливать:

· мототехника (мотоциклы часто отклоняются от вертикальной плоскости);

· морской и речной транспорт (постоянная качка);

· источники бесперебойного питания;

· и автомобили. Зачастую такие батареи эксплуатируются на иномарках, потому цена на такие аккумуляторы довольно высока.

Щелочные аккумуляторные батареи

В качестве электролита батареи могут содержать не только кислоту, но и щелочь. Есть множество разных типов щелочных аккумуляторов, однако рассмотрим те, которые используются в автомобилях.

Автомобильный аккумулятор щелочной может быть двух типов:

· никель-кадмиевый;

· никель-железный.

Никель-кадмиевая батарея имеет положительные пластины, покрытые гидроксооксидом никеля NiO(OH), а отрицательные - смесью железа и кадмия. Никель-железная батарея имеет такие же положительные пластины (то есть, покрыты таким же составом, что и в никель-кадмиевой батарее) - гидроксооксидом никеля. Отличается лишь отрицательным электродом - в данной батарее он выполнен из чистого железа. В качестве электролита в обоих типах выступает раствор едкого калия.

Пластины в щелочных аккумуляторах упаковываются в «конверты» из тонкой перфорированной металлической пластины. Туда же запрессовывается активное вещество, что позволяет значительно повысить виброустойчивость аккумулятора.

Щелочные обладают интересной особенностью: никель-кадмиевые аккумуляторы имеют положительных электродов на один больше, чем отрицательных. Никель-железные аккумуляторы в свою очередь имеют отрицательных электродов больше. Также особенностью таких аккумуляторов является то, что протекание химических реакций не требует расхода электролита, поэтому доливать его не нужно.

Преимущества и недостатки щелочных аккумуляторов

Щелочные обладают целым рядом преимуществ перед кислотными аккумуляторами:

  • идеальная переносимость переразрядов, более того, существует мнение, что такую батарею лучше перезарядить, чем наоборот, недозарядить;
  • батарея способна храниться в полностью разряженном состоянии, не теряя своих характеристик;
  • прекрасная работа в условиях низких температур, что позволяет безотказно заводить двигателя в зимнюю пору года;
  • Саморазряд таких батарей ниже кислотных;
  • щелочные батареи не выделяют вредных испарений, в отличие от кислотных ;
  • Щелочные аккумуляторы способны накапливать намного больше энергии на единицу массы, что позволяет дольше выдавать ток.

Но, наряду с этим, есть и недостатки:

  • Щелочные батареи выдают меньшее напряжение, чем кислотные, вследствие чего нужно объединять много «банок» чтобы достичь нужного напряжения. Из-за этого габариты щелочной батареи намного больше, чем у кислотного аккумулятора.
  • Щелочные аккумуляторы намного дороже кислотных батарей.

На сегодняшний день щелочные используются, как правило, в качестве тяговых батарей. Что касается стартерных батарей, то их огромные габариты позволяют использовать такие аккумуляторы только на грузовиках.

Литиево-ионные аккумуляторные батареи

Литиево-ионные аккумуляторы (и его подвиды) – это самые перспективные элементы в качестве источника электрического тока.

Химическими элементами этого носителя тока являются ионы лития. Сегодня нет возможности достоверно описать материал, из которого изготавливаются электроды, так как технология постоянно совершенствуется. Можно, конечно, сказать, что на первых порах в качестве отрицательных пластин использовался литий, но такие оказались чересчур взрывоопасными. Спустя некоторое время разработчики начали использовать графит в изготовлении электродов. Положительные пластины раньше изготавливались из оксидов лития с марганцем или кобальтом, но сейчас они замещаются литий-ферро-фосфатными, потому как этот материал менее токсичен, дешевый и экологически чистый.

Важнейшие достоинства литиево-ионных аккумуляторов такие:

  • высокая емкость на единицу массы;
  • высокое напряжение (один элемент может выдать около 4 вольт);
  • низкий уровень саморазряда.

Также есть и некоторые недостатки такого типа батарей:

  • гиперчувствительность к температурному режиму. Низкие температуры ухудшают качество этих батарей. Это, наверное, главная проблема таких аккумуляторов, над которой работают разработчики.
  • малое количество циклов (около 500);
  • эти «стареют». В течение определенного времени происходит уменьшение емкости батареи. Это не «эффект памяти» и не саморазряд, не путайте. Однако работа над этой проблемой беспрерывно ведется;
  • гиперчувствительность к глубоким разрядам;
  • малая мощность, которой не хватает для применения в качестве стартерного аккумулятора. Силы выдаваемого тока достаточно для питания различных приборов, но крайне мало для пуска двигателя.

Когда инженеры все-таки решат проблему с недостатками, литиево-ионные заменят классическую кислотную батарею.

Каждый день сотни ученых трудятся над усовершенствованием всех типов аккумуляторов. Исследовательские центры постоянно задаются вопросом: , как уменьшить размеры, как создать морозоустойчивый аккумулятор, и прочие.

Очень серьезное направление – обеспечение экологичности, ведь современные технологии не могут обойтись без применения в работе ядовитых веществ (к примеру, свинец или серная кислота).

Вряд ли традиционные свинцово-кислотные имеют свое будущее. AGM аккумуляторы - это промежуточная стадия в эволюции. Батарея в будущем не будет иметь жидкости, будет выглядеть в произвольной форме, а также будет иметь множество иных параметров, которые дадут возможность автовладельцам в полном объеме насладиться поездкой и не нервничать из-за того, что может отказать в любой момент.

  • Свинцовые аккумуляторы. В этих аккумуляторах реагентом является диоксид свинца и сам свинец, а электролитом раствор серной кислоты. Еще их называют свинцово-кислотными. Разделяют на четыре группы: стационарные, стартерные, портативные (герметизированные) и тяговые. Наибольшее распространение получили стартерные аккумуляторы, их используют для запуска двигателей внутреннего сгорания и обеспечения энергией устройств в машине. Их недостатком можно назвать невысокие значения удельной энергии, не очень хорошую сохранность заряда и выделение водорода.
  • Никель-кадмиевые аккумуляторы. Здесь реагентами выступают гидроксид никеля и кадмий соответственно, а электролитом раствор гидроксида калия, в связи с этим их еще называют щелочными аккумуляторами. Подразделяются на ламельные, безламельные и герметичные. Ламельный никель-кадмиевые аккумуляторы довольно дешевые, характеризуются плоской разрядной кривой, высоким ресурсом работы и прочностью. Применяются для питания шахтных электровозов, подъёмников, средств связи, электронных приборов, стационарного оборудования, для запуска дизелей и авиационных двигателей.
  • Герметичные аккумуляторы характеризуются горизонтальной разрядной кривой, высокой скоростью разряда и способностью работать при низкой температуре, но стоят дороже и обладают эффектом памяти. Применяют их для питания портативной аппаратуры, бытовых приборов, детских игрушек. Большой недостаток этих аккумуляторов заключается в токсичности применяемого кадмия.
  • Никель-железные аккумуляторы. От вышеописанной проблемы ушли используя вместо кадмия железо. Аккумуляторы не содержат токсичный кадмий, дешевле стоят, имеют долгий срок службы и высокую прочность, но из-за выделения водорода в начале заряда производятся только в негерметичном варианте. Характеризуются высоким саморазрядом, низкой отдачей энергии, при температурах ниже -10 градусов практически неработоспособны. В основном их используют как тяговые источники тока в электровозах и промышленных подъемниках.
  • Никель-металлогидридные аккумуляторы. Здесь активным материалом электрода выступает интерметаллид, который сорбирует водород, т.е. фактически он является водородным электродом с восстановленной формой в абсорбированном состоянии. У аккумулятора разрядная кривая такая же, как и у никель-кадмиевых аккумуляторов, но энергия и удельная емкость в 1,5-2 раза выше, плюс к этому они не содержат токсичный кадмий! Сделаны в герметичном исполнении различных форм (цилиндр, призма, диск). Применяют для питания аппаратуры и портативных приборов.
  • Никель-цинковые аккумуляторы. Это щелочные аккумуляторы с цинковым электродом. Их удельная энергия в 2 раза больше, чем у никель-кадмиевых. Характеризуются горизонтальной разрядной кривой, высокой удельной мощностью и довольно невысокой ценой, но зато их ресурс довольно мал из-за чего они не вошли в массовое использование. Применяют для портативной аппаратуры.
  • Серебряно-цинковые и серебряно-кадмиевые аккумуляторы. В них активными материалами выступают оксид серебра, цинк и кадмий, а электролитом - щелочи. Характеризуются высокими энергиями и мощностями, низким саморазрядом, но за счёт этого и дорого стоят. У серебряно-цинковых небольшой ресурс, выпускаются в форме призмы или диска, служат для питания портативных приборов, а также военной техники.
  • Никель-водородные аккумуляторы. В таких аккумуляторах отрицательным электродом выступает пористый газодиффузионный электрод, у которого платиновый катализатор. Характеризуются высокой удельной энергией, высоким ресурсом, но быстро разряжаются и дорого стоят. Нашли применение в космической промышленности.
  • Литий-ионные аккумуляторы. Анодом является углеродистый материал, в который внедрены ионы лития. Положительным электродом служит чаще всего кобальт, в который также внедрены ионы лития. Электролит - соль лития в неводном растворителе. Характеризуются высокой удельной энергией, ресурсом и способностью работать при низких температурах. Поэтому их производство в последнее время резко выросло. Применяют в мобильных телефонах, ноутбуках и др. устройствах
  • Литий -полимерные аккумуляторы. Здесь отрицательный электрод представлен углеродистым материалом с внедренными ионами лития, а положительный электрод - оксиды кобальта либо марганца. Электролит - раствор соли лития в неводном растворителе, заключен в маленькую полимерную матрицу. По сравнению с описанным выше аккумулятором имеет еще более высокую удельную энергию и ресурс, более безопасен. Применяется в питании электронных портативных устройств.
  • Перезаряжаемые марганцево-цинковые источники тока. Это такие источники тока с щелочным элкетролитом, которые способны электрически перезаряжаться. Высокая удельная энергия, низкий саморазряд, небольшая стоимость. Герметичное исполнение, но очень маленький ресурс, всего 20-50 циклов.

Автомобильный аккумулятор - товар сезонный, хотя используется круглый год. Когда на улице поют птички, а внутри двигателя плещется теплое масло, то прокручивать коленвал несложно - с этим справляется даже полудохлая батарея. А вот на холоде стартеру нелегко, и он норовит превратиться в чисто активное сопротивление, потребляющее очень большой ток. В итоге аккумулятор норовит отказать, а владельцу предстоит поход в магазин.

Как выбрать батарею

Если не хотите обращаться в сервис или к помощи продавца, то алгоритм выбора должен быть следующий.

Брать надо такую батарею, которая гарантированно уместится в отведенной ей нише, будь то моторный отсек, багажник или что-то еще. Согласитесь: глупо промахнуться на пару сантиметров! Одновременно определяем полярность: смотрим на старую батарею и соображаем, что у нее справа, а что слева? Само собой, что если машина не европейская, то и сами клеммы могут отличаться от большинства привычных - как по форме, так и по расположению.

После этого выбираем бренд. Тут мы однозначно советуем руководствоваться списком наших победителей последних лет и никогда не «клевать» на новичков или аутсайдеров. Даже если их этикетки самые красивые. Вот некоторые имена из тех, которые обычно нас не подводили: Tyumen (тюменские батареи), Varta, Мedalist, а-mega, Мutlu, Topla, «Актех», «Зверь».

Сравнительные испытания различных автомобильных аккумуляторов мы проводим каждый год. Самые свежие результаты, где мы сравнивали 10 батарей, можно увидеть Желающие могут ознакомиться и с экспертизами прошлых лет: , , , и т. п.

Марка батареи, как правило, определяет и ее цену. Примерная стоимость автомобильных аккумуляторов европейского исполнения с габаритами 242×175×190 мм в 2014 году составляла от 3000 до 4800 руб. за обычную батарею, и от 6300 до 7750 руб. - для AGМ. Заявленные ток и емкость получатся сами собой - исходя из габаритов.

Важно: если у вас была установлена батарея AGM, то и менять ее следует только на AGM, а не на «обыкновенную». Обратная замена вполне допустима, но нецелесообразна экономически .
Теперь заряжаем батарею - даже только что купленную! Наш опыт показывает: в магазинах под видом новенького аккумулятора вам радостно втюхают «почти новый», с которого разве что успели вытереть пыль. Заряжаем, подключаем вместо старой батареи, и - ключ на старт!

Тем, кого интересуют технические нюансы

Полезно ли в холодное время перед пуском мотора «погреть» батарею включением фар?

Зачем нужен индикатор-глазок?

Этот индикатор позволяет примерно оценить плотность и уровень электролита, чтобы выяснить, нуждается ли автомобильный аккумулятор в подзарядке. По большому счету, это игрушка, поскольку глазок находится только в одной банке из шести. Однако многие серьезные производители в свое время были вынуждены вводить его в конструкцию, поскольку отсутствие глазка воспринималось потребителями как недостаток.

Можно ли оценить состояние автомобильного аккумулятора по напряжению на клеммах?

Приблизительно можно. При комнатной температуре полностью заряженная батарея, отключенная от нагрузок, должна выдавать не менее 12,6–12,7 В.

Что скрывается за термином «кальциевая батарея»?

Ничего особенного: это обычный рекламный ход. Да, значки «Ca» (а то и «Ca - Ca») на автомобильных аккумуляторах сегодня присутствует все чаще, но легче они от этого не становятся. А ведь кальций - металл куда менее тяжелый, чем свинец. Все дело в том, что речь идет о совсем небольших (доли или единицы процента) добавках кальция в сплав, из которого изготавливают пластины батарей. Если его добавляют и в положительные, и в отрицательные электроды, то и получается то самое «Са - Са». Такие автомобильные аккумуляторы при прочих равных условиях труднее закипают, что важно для необслуживаемых батарей. Меньше у таких батарей и саморазряд при хранении. Поэтому «обычных» батарей с добавками традиционной прежде сурьмы (их обычно выдает наличие пробок) сегодня в продаже почти не встретишь! Заметим, что не все в них так уж плохо: например, они куда лучше переносят глубокие разряды!

Почему автомобильные аккумуляторы при проверке выдают заявленный ток так недолго?

Действительно, если емкость равна 60 А ч, то арифметика подсказывает: ток в 600 А должен выдаваться примерно 0,1 часа или 6 минут! А реальный счет идет всего лишь на десятки секунд… Все дело в том, что емкость батареи зависит от тока! А при указанном токе емкость батареи составляет уже не 60 А ч, а гораздо меньше: примерно 20–25! Надпись 60 А ч говорит лишь о том, что в течение 20 часов при температуре 25ºС вы можете разряжать свой аккумулятор током, равным 60/20=3А - и не более того. При этом в конце разряда напряжение на выводах аккумулятора не должно опуститься ниже 10,5 В.

Зачем выбирать батарею с заявленным током, скажем, 600 А, если реальная потребность вдвое меньше?

Заявленный ток - это еще и косвенный показатель качества автомобильного аккумулятора: чем он выше, тем ниже его внутреннее сопротивление! К тому же, если взять крайний случай, когда, не дай бог, масло загустело настолько, что стартер вообще еле-еле сдвигает с места коленвал, то вот здесь-то и может понадобиться максимально возможный ток.

Правда ли, что при установке на машину автомобильного аккумулятора большей емкости, чем у штатного, он будет недозаряжаться, а стартер может выйти из строя?

Нет, неправда. Что помешает батарее зарядиться полностью? Уместно провести аналогию: если вы зачерпнули стакан воды из ведра или из огромной бочки, то для восстановления исходного уровня жидкости вам потребуется долить из-под крана все тот же стакан - как в ведро, так и в бочку. Что касается ожидаемой поломки стартера, то его ток потребления не изменится, даже если емкость батареи вырастет раз в сто или тысячу. Закон Ома от ампер-часов не зависит.

Разговоры про грядущие поломки уместны разве что для экстремалов, привыкших выбираться из болота на стартере. При этом последний, понятное дело, очень сильно греется, а потому маленькая батарейка, которая разрядится быстрее большой, может спасти его от смертельного перегрева, умерев первой… Но это - гипотетический случай.

Сразу отметим один любопытный нюанс. В советские времена на ряде армейских грузовиков было строго запрещено устанавливать автомобильный аккумулятор большей емкости! Но причина была именно в том, что когда двигатель не желал пускаться, водители частенько крутили стартеры до тех пор, пока аккумулятор не разрядится полностью. Стартеры при этом сильно перегревались и нередко выходили из строя. А чем выше емкость батареи, тем дольше можно было издеваться над бедным электромотором. Именно для защиты стартеров от подобного издевательства и появилось когда-то требование не превышать емкость батареи выше «стандартной». Но сейчас это неактуально.

Вопрос на миллион: что измеряют в ампер-часах?

Во всяком случае, не емкость батарей! Это распространенное заблуждение даже в среде профессионалов. Которые, однако же, теряются, когда их спрашивают, каким образом произведение тока на время дает емкость? Потому что правильный ответ такой: ампер-час - единица измерения заряда ! 1 А ч = 3600 Кл. А емкость измеряют в фарадах: 1Ф = 1Кл/1 В. Те, кто в это не верит, могут обратиться к любому справочнику - например, к бошевскому.

Что до аккумуляторов, то запутанная терминология жива до сих пор. И то, что на самом деле является зарядом, по старинке обзывают емкостью. Некоторые учебники выкручиваются - мол, «емкость оценивают в ампер-часах». Не измеряют, а оценивают! Ну, что ж, хотя бы так…

Кстати говоря, в советские времена выбрать батарею было несравнимо проще - только по ампер-часам. Скажем, на «Волгу» надо было искать автомобильный аккумулятор на 60 А ч, на «Жигули» -55 А ч. Полярность и клеммы на отечественных авто были одинаковые. Сегодня же ориентироваться только на ампер-часы не стоит, поскольку изделия разных производителей при одинаковой емкости могут довольно сильно отличаться по прочим параметрам. Скажем, батареи 60 А ч могут иметь 11-процентный разброс по высоте, 28-процентный по заявленному току и т. п. Цены при этом также живут своей жизнью.

И последнее. Если вместо «А ч» увидите надпись «А/ч» (на этикетке, в статье, в рекламе - неважно) - не связывайтесь с этой продукцией. За ней стоят необразованные и безразличные люди, не имеющие элементарного представления об электричестве.

Что такое батарея AGM?

Основная область применения AGM -- это автомобили с режимами «Старт-Стоп». На этой батарее даже указано: Start Stop!

Основная область применения AGM -- это автомобили с режимами «Старт-Стоп». На этой батарее даже указано: Start Stop!

Формально говоря, автомобильный аккумулятор AGМ - это то же свинцово-кислотное изделие, к которому привыкли многие поколения автомобилистов, но при этом оно гораздо совершеннее своих предков и в ближайшее время полностью вытеснит их с рынка.

AGM (Absorbent Glass Mat) - это технология изготовления аккумуляторов с абсорбированным электролитом, которым пропитаны микропоры сепаратора. Свободный объем этих микропор разработчики используют для замкнутой рекомбинации газов, тем самым не давая испаряться воде. Водород и кислород, покидающие отрицательную и положительную пластины соответственно, попадают в связанную среду и вновь соединяются, оставаясь внутри батареи. Внутреннее сопротивление такой батареи ниже, чем у «жидких» предшественниц, поскольку проводимость сепаратора из стекловолокна лучше по сравнению с традиционными «конвертами» из полиэтилена. Поэтому она способна отдавать более высокие токи. Плотно сжатый пакет пластин мешает активной массе осыпаться, что позволяет выдерживать глубокие циклические разряды. Такой автомобильный аккумулятор может работать хоть вверх ногами. А если разбить ее вдребезги, то даже в этом случае ядовитой лужи не будет: связанный электролит должен остаться в сепараторах.

Сегодняшние области применения AGМ - это автомобили с режимом «Старт-стоп», машины с повышенным энергопотреблением (МЧС, «скорая») и т. п. Но уже завтра «простой» автомобильный аккумулятор потихоньку уйдет в историю…

Взаимозаменяемы ли AGМ и обычные батареи между собой?

Автомобильный аккумулятор AGM заменяет «обычный» на 100%. Нужна ли такая замена, если автомобилю хватает исправной штатной батареи - другой вопрос. А вот обратная замена, конечно же, неполноценна - она может применяться на практике только в безвыходной ситуации и как временный вариант.

Правда ли, что автомобильный аккумулятор AGМ на 50 А ч можно применять вместо обычного на 90 А ч?

Это, извините, чепуха. Как можно почти вдвое уменьшить заряд и говорить, что разницы не будет? Потерянные ампер-часы не компенсирует никакая технология, даже AGM.

Верно ли, что большой ток батареи AGМ может погубить стартер автомобиля?

Конечно же, нет. Ток определяется сопротивлением нагрузки, а в данном случае - стартера. И даже если автомобильный аккумулятор может выдать ток в миллион ампер, стартер возьмет себе ровно столько, сколько и от обычной батареи. Нарушить закон Ома ему не под силу.

На каких авто нежелательно применять AGM?

Такого ограничения нет. Даже если рассматривать древние машины с абсолютно неисправным реле-регулятором и нестабильным напряжением в сети, то и в этом случае автомобильный аккумулятор AGM помрет не раньше обычного, а даже позже. Предельное напряжение, выше которого возможны неприятности, составляет примерно 14,5 В для обычных батарей и 14,8 В для AGM.

Какой автомобильный аккумулятор сильнее боится глубокого разряда - AGМ или обычный?

Обычные. После 5–6 глубоких разрядов они могут окончательно «обидеться», в то время как для AGM это число практически не ограничено.

Можно ли считать автомобильный аккумулятор AGМ полностью необслуживаемым?

Это вопрос устоявшейся терминологии, работающей больше в пользу пиара, нежели науки. Строго говоря, этот термин некорректен - как для батарей AGM, так и для любых других автомобильных аккумуляторов. Полностью необслуживаемой можно называть разве что пальчиковую батарею АА, а любой свинцовый автомобильный аккумулятор таковым, вообще говоря, не является. Даже лидер технологии - батарея AGM - является герметичной, скажем так, на 99%, но не на все 100%. И такую батарею все-таки нужно обслуживать - проверять заряженность, подзаряжать при необходимости и т.п.

Чем гелевые батареи отличаются от AGM?

Как минимум тем, что гелевых автомобильных аккумуляторов… не существует! Вопрос порожден устоявшейся неверной терминологией: гелевые батареи применяют, например, в электропогрузчиках или поломоечных машинах. Электролит в них, в отличие от обычных автомобильных аккумуляторов с жидкой кислотой, находится в загущенном состоянии. В аккумуляторных батареях с технологией AGM электролит связан (пропитан) в специальном сепараторе из стекловолокна.

Заметим, что популярнейшая батарея Optima - тоже AGM, а вовсе не гелевая.

Что такое резервная емкость батареи?

Этот параметр показывает, долго ли холодной дождливой ночью продержится автомобиль, у которого испортился генератор. Эксперт скажет иначе: за сколько минут напряжение на клеммах батареи, выдающей в нагрузку ток 25 А, снизится до 10,5 В. Измерения проводят при температуре 25 °С. Чем выше результат, тем лучше.

Надеемся, что наши советы помогут вам выбрать нужную батарею и освежить в памяти любопытную «аккумуляторную» информацию.

Удачи на дорогах!