Интерференции в тонких пленках: явление и условия для его возникновения. Интерференции в тонких пленках: явление и условия для его возникновения Условие максимума в тонких пленках

Перевод Александра Жданова

Интерференция в тонкой плёнке происходит, когда падающие световые волны, отраженные от верхней и нижней границы тонкой пленки, интерферируют друг с другом, формируя новую волну. Исследуя эту отраженную волну, можно раскрыть информацию о поверхности, от которой компоненты этой волны были отражены, включая толщину пленки или величину эффективного показателя преломления материала пленки. Тонкие пленки имеют много коммерческих применений, включая антибликовые покрытия, зеркала и оптические фильтры.

Тонкая пленка представляет собой слой материала толщиной в диапазоне от субнанометрового до микронного. Когда свет падает на поверхность пленки, он либо проходит насквозь, либо отражается от верхней поверхности. Свет, который проходит через верхнюю границу, достигает нижнюю поверхность и может вновь быть преломлен или отражён. Уравнения Френеля дают количественное описание того, сколько света пройдёт или отразится на границе. Свет, отраженный от верхней и нижней поверхностей будет проявлять свойство интерференции. Степень конструктивной или деструктивной интерференции между двумя световыми волнами зависит от разницы в их фазы. Это различие, в свою очередь, зависит от толщины слоя пленки, показателя преломления пленки, и угла падения исходной волны на пленку. Кроме того, сдвиг фазы на 180° или на Pi в радианах может возникнуть при отражении на границе в зависимости от соотношения показателей преломления материалов по обе стороны от границы. Этот фазовый сдвиг возникает, если показатель преломления среды меньше показателя преломления материала, через который проходит (распространяется) свет. Другими словами, если n 1

Рассмотрим свет, падающий на тонкую пленку и отраженный от верхней и нижней границы. Необходимо рассчитать оптическую разность хода отражённого света, чтобы определить условие интерференции.

Это условие может измениться после рассмотрения возможных фазовых сдвигов, которые происходят при отражении.

Если падающий свет является монохроматическим, то интерференционные картины появляются в виде светлых и темных полос. Светлые полосы соответствуют областям, в которых происходит конструктивная интерференция между отраженными волнами, а темные полосы соответствуют областям деструктивной интерференции. Как и толщина пленки, меняющаяся от одного места до другого, интерференция может меняться от конструктивной до деструктивной. Хороший пример такого явления - "кольца Ньютона", демонстрирующие интерференционную картину, которая возникает при отражении света от сферической поверхности, прилегающей к плоской поверхности.

Если падающий свет широкополосный, или белый, как свет от солнца, интерференционные картины появляются как красочных(разноцветных) полосы. Различные длины волн света создают конструктивную интерференцию для различных толщин пленок. Различные участки пленки появляются в различных цветах в зависимости от местной толщины пленки.

При освещении тонкой прозрачной пластинки или пленки можно наблюдать интерференцию световых волн, отраженных от верхней и нижней поверхностей пластинки (рис. 26.4). Рассмотрим плоскопараллельную пластинку толщины / с показателем преломления п } на которую под углом а падает плоская монохроматическая волна с длиной волны X. Предположим для определенности, что луч падает на пластинку из воздуха с показателем преломления

а пластинка лежит на подложке с показателем преломления

Рис. 26.4

Такая ситуация имеет место, например, при интерференции в тонкой пластинке или пленке, окруженной воздухом.

Найдем оптическую разность хода интерферирующих лучей 2 и 3 между точкой А и плоскостью CD. Именно эта разность определяет интерференционную картину, поскольку расположенная далее собирающая линза (или глаз) лишь сводит два интерферирующих луча в один. При этом надо учесть, что в соответствии с опытом отражение от оптически более плотной среды в точке А ведет к изменению фазы на Х/2 (на противоположную), а отражение от оптически менее плотной среды в точке В не ведет к изменению фазы волны. Таким образом, набирается оптическая разность хода интерферирующих лучей 2 и 3, равная

Из аАВО следует, что

Из aACD с учетом закона преломления-= п имеем

J sin р

AD = АС sina = 2/10sina = 2/tgPsina = 2w/tgpsinp = 2rc/sin 2 p/cosp.

Тогда оптическая разность хода равна

Эту формулу удобней анализировать, если из закона преломления выразить угол преломления через угол падения:

Из условия максимума (26.19) имеем

В свою очередь условие минимума (26.20) дает

(в последней формуле нумерация целых чисел для упрощения вида формулы сдвинута на единицу).

Согласно формулам в зависимости от угла падения монохроматического света пластинка в отраженном свете может выглядеть светлой или темной. Если пластинку освещать белым светом, то условия максимума и минимума могут выполняться для отдельных длин волн и пластинка выглядит окрашенной. Этот эффект можно наблюдать на стенках мыльных пузырьков, на пленках масла и нефти, на крыльях насекомых и птиц, на поверхности металлов при их закалке (цвета побежалости).

Если монохроматический свет падает на пластинку переменной толщины, то условия максимума и минимума определяются толщиной /. Поэтому пластинка выглядит покрытой светлыми и темными полосами. При этом в клине - это параллельные линии, а в воздушном промежутке между линзой и пластинкой - кольца (кольца Ньютона).

Прямое отношение к интерференции в тонких пленках имеет просветление оптики. Как показывают расчеты, отражение света приводит к уменьшению интенсивности прошедшего света на несколько процентов даже почти при нормальном падении света на линзу. Учитывая, что современные оптические устройства содержат достаточно большое количество линз, зеркал, светоделительных элементов, потери интенсивности световой волны без применения специальных мер могут стать значительными. Для уменьшения потерь на отражение используется покрытие оптических деталей пленкой со специальным образом подобранными толщиной / и показателем преломления п и. Идея уменьшения интенсивности отраженного света от поверхности оптических деталей состоит в интерференционном гашении волны, отраженной от внешней поверхности пленки, волной, отраженной от внутренней поверхности пленки (рис. 26.5). Для осуществления этого желательно, чтобы амплитуды обеих волн были равны, а фазы отличались на 180°. Коэффициент отражения света на границе сред определяется относительным показателем преломления сред. Так, если Рис. 26.5

свет проходит из воздуха в линзу с показателем преломления п у то условие равенства относительных показателей преломления на входе в пленку и выходе из нее сводится к соотношению

Толщина пленки подбирается исходя из условия, чтобы дополнительный набег фазы света был равен нечетному числу полуволн. Таким способом удается ослабить отражение света в десятки раз.

Световых волн от двух точечных источников света. Однако часто нам приходится иметь дело с протяжёнными источниками света при явлениях интерференции, наблюдаемых в естественных условиях, когда источником света служит участок неба, т.е. рассеянный дневной свет. Наиболее часто встречающийся и весьма важный случай подобного рода имеет место при освещении тонких прозрачных плёнок, когда необходимое для возникновения двух когерентных пучков расщепление световой волны происходит вследствие отражения света передней и задней поверхностями плёнки.

Явление это, известное под названием цветов тонких плёнок , легко наблюдается на мыльных пузырях, на тончайших пленках масла или нефти, плавающих на поверхности воды, и т.д.

Пусть на прозрачную плоскопараллельную пластинку падает плоская световая волна, которую можно рассматривать как параллельный пучок волн.

Пластинка отражает два параллельных пучка света, из которых один образовался за счет отражения от верхней поверхности пластинки, второй - вследствие отражения от нижней поверхности каждый из этих пучков представлен только одним лучом).

Рисунок 2. Интерференция в тонких пленках.

При входе в пластинку и при выходе из нее второй пучок претерпевает преломление. Кроме этих двух пучков, пластинка отражает пучки, возникающие в результате трех -, пяти - и т.д. кратного отражения от поверхности пластинки. Однако ввиду их малой интенсивности это пучки принимать во внимание мы не будем. Разность хода, приобретенная лучами 1 и 2 до того, как они сойдутся в точке С, равна , (8) где S 1 - длина отрезка ВС; S 2 - суммарная длина отрезков АО и ОС; n - показатель преломления пластинки.

Показатель преломления среды, окружающей пластинку, полагаем равным единице, b - толщина пластинки. Из рисунка видно, что:

;

подставив эти значения в выражение (8) и произведя простые вычисления легко привести формулу (9) для разности хода Δ к виду

. (9)

Однако, при вычислении разности фаз между колебаниями в лучах 1 и 2 нужно, кроме оптической разности хода Δ, учесть возможность изменения фазы волны в точке С, где отражение происходит от границы раздела оптически менее плотной среды. Поэтому фаза волны претерпевает изменение на π. В итоге между 1 и 2 возникает дополнительная разность фаз, равная π. Ее можно учесть, добавив к Δ (или вычтя из нее) половину длины волны в вакууме. В результате получим

(10)

Интенсивность зависит от величины оптической разности хода (10). Соответственно, из условий (5) и (6) при получаются максимумы, а при - минимумы интенсивности (m - целое число).


Тогда условие максимума интенсивности имеет вид:

, (11)

а для минимума освещенности имеем

. (12)

При освещении светом плоскопараллельной пластинки (b = const) результаты интерференции зависят только от углов падения на плёнку. Интерференционная картина имеет вид чередующихся криволинейных тёмных и светлых полос. Каждой из этих полос соответствует определённое значение угла падения. Поэтому они называются полосами или линиями равного наклона. Если оптическая ось линзы L перпендикулярна к поверхности плёнки, полосы равного наклона должны иметь вид концентрических колец с центром в главном фокусе линзы. Это явление используется на практике для весьма точного контроля степени плоскопараллельности тонких прозрачных пластинок; изменение толщины пластинок на величину порядка 10 -8 м уже можно обнаружить по искажению формы колец равного наклона.

Интерференционные полосы на поверхности плёнки в виде клина имеют равную освещённость на всех точках поверхности, соответствующих одинаковым толщинам плёнки. Интерференционные полосы параллельны ребру клина. Их называют интерференционными полосами равной толщины.

Формула (10) выведена для случая наблюдения интерференции в отраженном свете. Если интерференционные полосы равного наклона наблюдаются в тонких пластинках или плёнках, находящихся в воздухе на просвет (в проходящем свете), то потери волны при отражении не произойдёт и разность хода Δ будет определяться по формуле (9). Следовательно, оптические разности хода для проходящего и отражённого света отличаются на λ/2, т.е. максимумам интерференции в отражённом свете соответствуют минимумы в проходящем свете, и наоборот.

Кольца Ньютона .

Полосы равной толщины можно получить, если положить плосковыпуклую линзу с большим радиусом кривизны R на плосковыпуклую пластинку. Между ними также образуется воздушный клин. В этом случае полосы равной толщины будут иметь вид колец, которые называются кольцами Ньютона ; разность хода интерферирующих лучей, так же и в предыдущем случае, будет определяться по формуле (10).

Определим радиус k-го кольца Ньютона: из треугольника ABC имеем , откуда, пренебрегая b 2 , так как R>> b, получим .

Рисунок 3. Кольца Ньютона

Подставляем это выражение в формулу (10):

Если эта разность хода равна целому числу длин волн (условие максимума интерференции), то для радиуса k-го светлого кольца Ньютона в отраженном свете или тёмного в проходящем имеем:

. (14)

Произведя аналогичные несложные выкладки, получим формулу для определения радиусов тёмных колец в отражённом свете (или светлых в проходящем):

ис. 1 К КК

При прохождении света через линзы или призмы на каждой из поверхности световой поток частично отражается. В сложных оптических системах, где много линз и призм, проходящий световой поток значительно уменьшается, кроме того, появляются блики. Так, было установлено, что в перископах подводных лодок отражается до 50% входящего в них света. Для устранения этих дефектов применяется приём, который называется просветлением оптики. Сущность этого приёма заключается в том, что оптические поверхности покрываются тонкими плёнками, создающими интерференционные явления. Назначение пленки заключается в гашении отраженного света.

Вопросы для самоконтроля

1) Что называется интерференцией и интерференцией плоских волн?

2) Какие волны называются когерентными?

3) Объясните понятие временной и пространственной когерентности.

4) Что представляет собой интерференция в тонких пленках.

5) Объясните в чем заключается многолучевая интерференция.

СПИСОК ЛИТЕРАТУРЫ

Основная

1. Детлаф, А.А . Курс физики учеб. пособие / А.А. Детлаф, Б.М. Яворский. - 7-е изд. Стер. - М. : ИЦ «Академия». - 2008.-720 с.

2. Савельев, И.В . Курс физики: в 3т.: Т.1: Механика. Молекулярная физика: учеб.пособие / И.В. Савельев. - 4-е изд. стер. - СПб.; М. Краснодар: Лань.-2008.-352 с.

3. Трофимова, Т.И. курс физики: учеб. пособие/ Т.И. Трофимова.- 15-е изд., стер. - М.: ИЦ «Академия», 2007.-560 с.

Дополнительная

1. Фейнман, Р. Фейнмановские лекции по физике / Р. Фейнман, Р. Лейтон, М. Сэндс. - М.: Мир.

Т.1. Современная наука о природе. Законы механики. - 1965. -232 с.

Т. 2. Пространство, время, движение. - 1965. - 168 с.

Т. 3. Излучение. Волны. Кванты. - 1965. - 240 с.

2. Берклеевский курс физики. Т.1,2,3. - М.: Наука, 1984

Т. 1. Китель, Ч. Механика / Ч. Китель, У. Найт, М. Рудерман. - 480 с.

Т. 2. Парселл, Э. Электричество и магнетизм / Э. Парселл. - 448 с.

Т. 3. Крауфорд, Ф. Волны / Ф. Крауфорд - 512 с.

3. Фриш, С.Э. Курс общей физики: в 3 т.: учеб. / С.Э. Фриш, А.В. Тиморева. - СПб.: М.; Краснодар: Лань.-2009.

Т. 1. Физические основы механики. Молекулярная физика. Колебания и волны: учебник - 480 с.

Т.2: Электрические и электромагнитные явления: учебник. - 518 с.

Т. 3. Оптика. Атомная физика: учебник - 656 с.

Интерференция света в тонких плёнках.

Интерференцию света можно наблюдать не только в лабораторных условиях с помощью специальных установок и приборов, но и в ес­тественных условиях. Так, легко наблюдать радужную окраску мыльных пленок, тонких пленок нефти и минерального масла на поверхности воды, оксидных пленок на поверхности закаленных стальных деталей (цвета побежалости). Все эти явления обусловле­ны интерференцией света в тонких прозрачных пленках, возникающей в результате наложения когерентных волн, возникающих при отражении от верхней и нижней по­верхностей пленки.

Оптическая разность хода лучей 1 и 2

(6)

Где п – показатель преломления пленки; n 0 – показатель прелом­ления воздуха, n 0 = 1; λ 0 /2 – длина полуволны, потерянной при от­ражении луча 1 в точке о от границы раздела с оптически более плотной средой (n >n 0 ,).

. (7)

Полосы равного наклона и равной толщины.

Полосы равной толщины и равного наклона наблюдаются при интерференции волн, отраженных от двух границ прозрачной пленки или плоскопараллельной пластинки.

Полосы равного наклона локализованы на бесконечности.

Полосы равной толщины локализованы в плоскости, отражающей пленки. В пределах ширины пленки можно считать, что интерференционная картина локализована там, где вам удобнее.

Для наблюдения полос равной толщины отражающие поверхности не обязательно должны быть идеально плоскопараллельны. Пара отражающих плоскостей может образовывать тонкий клин. Могут быть соприкасающиеся поверхности, одна или обе из которых сферические (кольца ньютона).

Более того, две отражающих поверхности могут быть расположены в разных местах, как в интерферометре майкельсона (рис.28). Здесь s - источник света, p - экран для наблюдения интерференции отраженных волн от зеркал 1 и 2, 3 - полупрозрачная пластинка. Если зеркало 2 мысленно отразить в полупрозрачной пластинке 3, то его изображение примет положение 2". Вместе с зеркалом 2 мысленно отобразим в полупрозрачной пластинке и все лучи, идущие справа от нее к зеркалу 2 и от него обратно к полупрозрачной пластинке. Тогда на экран p свет будет приходить, как бы отражаясь от двух плоскостей 1 и 2". Если дополнить интерферометр двумя линзами, как это обычно делается (рис. 29), то, в зависимости от расстояния между линзой l 2 и экраном p, можно наблюдать полосы равной толщины (1/a 1 + 1/a 2 = 1/f 2) или полосы равного наклона (a 2 = f 2).

Кольца ньютона.

К ольца ньютона представляют собой интерференционные полосы, возникающие при наложении волн, отраженных от верхней и нижней поверхностей тонкой воздушной прослойки, заключенной между стеклянной пластинкой и наложенной на нее линзой большого радиуса кривизны (рис.2).

Ширина воздушного слоя увеличивается от точки соприкосновения n к краям линзы. В точках p 1 и p 2 , равноотстоящих от точки n, толщина слоя одинакова. На всей поверхности пластины равные толщины слоя располагаются по концентрическим окружностям с центром в точке n. Если осветить систему пластинка - линза почти параллельным пучком монохроматческого света., то в отраженном свете наблюдается большое число чередующихся светлых и темных концентрических колец с темным пятном в области точки n. Эти полосы равной толщины называются кольцами ньютона. Темное пятно в центре колец (при наблюдении в отраженном свете) объясняется тем, что геометрическая разность хода между интерферирующими волнами в области точки n практически равна нулю и лишь теряется полуволна при отражении от поверхности линзы.

Разность хода интерферирующих волн 1 и 2 D = 2d×n. Для воздушного слоя n = 1. Кроме указанной разности хода появляется дополнительная разность хода в полволны вследствие отражения луча в точке м от оптически более плотной среды:

Таким образом, полная разность хода между волнами 1 и 2 будет:

1). Для темных колец (9)

2). Для светлых колец (10)

Где m = 1,2,3…

Рассчитаем радиусы колец ньютона r m , наблюдаемых в отраженном свете.

из рис.3 следует, что для кольца порядка m:

Так как d m <<2r, то 2r-d m 2r следовательно:

Подставляя в формулы (9) и (10) выражение для d m получим:

1). Для темных колец (12)

2). Для светлых колец (13)

Из этих формул можно было бы определить l, зная радиус кольца, радиус кривизны линзы и порядок минимума (или максимума). Однако вследствие упругой деформации стекла невозможно добиться идеального соприкосновения линзы и пластинки в точке о. Поэтому более точно результат получится, если вычислять l по разности диаметров двух колец порядка d k и d m . Для темных колец имеем:

(14)

Таким образом, зная радиус кривизны линзы и диаметры темных интерференционных колец:, можно по формуле (14) вычислить длину световой волны l.

Практическое применение интерференции.

Использование интерференции в технике. Явление интерференции света находит широкое применение в современной технике. Одним из таких применений является создание "просветленной" оптики. Отполированная поверхность стекла отражает примерно 4% падающего на нее света. Современные оптические приборы состоят из большого числа деталей, изготовленных из стекла. Проходя через каждую из этих деталей, свет ослабляется на 4%. Общие потери света в объективе фотоаппарата составляют примерно 25%, в призменном бинокле и микроскопе - 50% и т. Д.

Для уменьшения световых потерь в оптических приборах все стеклянные детали, через которые проходит свет, покрывают пленкой, показатель преломления которой меньше показателя преломления стекла. Толщина пленки равна четверти длины волны.

Другим применением явления интерференции является получение хорошо отражающих покрытий, необходимых во многих отраслях оптики. В этом случае используют тонкую пленку толщиной l/4 из материала, коэффициент преломления которого n 2 больше коэффициента преломления n 3 . В этом случае отражение от передней границы происходит с потерей полволны, так как n 1 < n 2 , а отражение от задней границы происходит без потери полволны (n 2 > n 3). В результате разность хода d = l/4+l/4+l/2=l и отраженные волны усиливают друг друга.

И. С. Широко используется при спектральном анализе для точного измерения расстояний и углов, в рефрактометрии, в задачах контроля кач-ва поверхностей, для создания светофильтров, зеркал, просветляющих покрытий и др.; на явлениях и. С. Основана голография. Важный случай и. С. - интерференция поляризованных лучей.

Дифракция света. Принцип Гюйгенса – Френеля. Зоны Френеля. Дифракция Френеля на малом круглом отверстии. Дифракция Фраунгофера на одной щели. Дифракция Фраунгофера на дифракционной решетке. Дисперсия и разрешающая способность дифракционной решетки.

Интерференционные полосы равного наклона . При освещении тонкой пленки происходит наложение волн от одного и того же источника, отразившихся от передней и задней поверхностей пленки. При этом может возникнуть интерференция света. Если свет белый, то интерференционные полосы окрашены. Интерференцию в пленках можно наблюдать на стенках мыльных пузырей, на тонких пленках масла или нефти, плавающих на поверхности воды, на пленках, возникающих на поверхности металлов или зеркала.

Рассмотрим сначала плоскопараллельную пластинку толщины с показателем преломления (рис. 2.11). Пусть на пластинку падает плоская световая волна, которую можно рассматривать как параллельный пучок лучей. Пластинка отбрасывает вверх два параллельных пучка света, один из которых образовался за счет отражения от верхней поверхности пластинки, второй – вследствие отражения от нижней поверхности. Каждый из этих пучков представлен на рис. 2.11 только одним лучом.

При входе в пластинку и при выходе из нее пучок 2 претерпевает преломление. Кроме двух пучков и , пластинка отбрасывает вверх пучки, возникающие в результате трех-, пяти- и т.д. кратного отражения от поверхностей пластинки. Однако ввиду малой интенсивности их можно не принимать во внимание.

Рассмотрим интерференцию лучей, отраженных от пластинки. Поскольку на пластинку падает плоская волна, то фронт этой волны представляет собой плоскость, перпендикулярную лучам 1 и 2. На рис. 2.11 прямая ВС представляет собой сечение волнового фронта плоскостью рисунка. Оптическая разность хода, приобретаемая лучами 1 и 2 до того, как они сойдутся в точке С, будет

, (2.13)

где – длина отрезка ВС, а – суммарная длина отрезков АО и ОС. Показатель преломления среды, окружающей пластинку, полагаем равным единице. Из рис. 2.11 видно, что , . Подстановка этих выражений в (2.13) дает . Воспользуемся законом преломления света: ; и учтем, что , тогда для разности хода получим следующее выражение: .

При вычислении разности фаз между колебаниями в лучах и нужно, кроме оптической разности хода D, учесть возможность изменения фазы при отражении в точке С. В точке С отражение волны происходит от границы раздела среды оптически менее плотной со средой оптически более плотной. Поэтому фаза волны претерпевает изменение на p. В точке отражение происходит от границы раздела среды оптически более плотной со средой оптически менее плотной, и скачка фазы в этом случае не происходит. Качественно это можно представить себе следующим образом. Если толщину пластинки устремить к нулю, то полученная нами формула для оптической разности хода дает . Поэтому при наложении лучей и должно происходить усиление колебаний. Но это невозможно, так как бесконечно тонкая пластинка вообще не может оказывать влияния на распространение света. Поэтому волны, отраженные от передней и задней поверхности пластинки, должны при интерференции гасить друг друга. Их фазы должны быть противоположны, то есть оптическая разность хода D при d →0 должна стремиться к . Поэтому к прежнему выражению для D нужно прибавить или вычесть , где λ 0 – длина волны в вакууме. В результате получается:

. (2.14)

Итак, при падении на пластинку плоской волны образуются две отраженные волны, разность хода которых определяется формулой (2.14). Эти волны могут интерферировать, если оптическая разность хода не превышает длину когерентности. Последнее требование для солнечного излучения приводит к тому, что интерференция при освещении пластинки наблюдается только в том случае, если толщина пластинки не превышает нескольких сотых миллиметра.

Практически интерференцию от плоскопараллельной пластинки наблюдают, поставив на пути отраженных пучков линзу, которая собирает пучки в одной из точек экрана, расположенного в фокальной плоскости линзы. Освещенность в этой точке зависит от оптической разности хода. При получаются максимумы, при – минимумы интенсивности. Следовательно, условие максимумов интенсивности имеет вид:

, (2.15)

а минимумов:

. (2.16)

Эти соотношения получены для отраженного света.

Пусть тонкая плоскопараллельная пластинка освещается рассеянным монохроматическим светом. Расположим параллельно пластинке линзу, в фокальной плоскости которой поместим экран (рис. 2.12). В рассеянном свете имеются лучи самых разнообразных направлений. Лучи, параллельные плоскости рисунка и падающие на пластинку под углом , после отражения от обеих поверхностей пластинки соберутся линзой в точке и создадут в этой точке освещенность, определяемую значением оптической разности хода. Лучи, идущие в других плоскостях, но падающие на пластику под тем же углом, соберутся линзой в других точках, отстоящих от центра экрана на такое же расстояние, как и точка . Освещенность во всех этих точках будет одинакова. Таким образом, лучи, падающие на пластинку под одинаковым углом , создадут на экране совокупность одинаково освещенных точек, расположенных по окружности с центром точке О. Аналогично, лучи, падающие под другим углом , создадут на экране совокупность одинаково освещенных точек, расположенных по окружности другого радиуса . Но освещенность этих точек будет иной, так как им соответствует другая оптическая разность хода.

В результате на экране возникнет совокупность чередующихся темных и светлых круговых полос с общим центром в точке О. Каждая полоса образована лучами, падающими на пластину под одинаковым углом. Поэтому получающиеся в этом случае интерференционные полосы называютсяполосами равного наклона.

Согласно (2.15) положение максимумов интенсивности зависит от длины волны , поэтому в белом свете получается совокупность смещенных друг относительно друга полос, образованных лучами разных цветов, и интерференционная картина приобретет радужную окраску.

Для наблюдения полос равного наклона экран должен располагаться в фокальной плоскости линзы, так, как его располагают для получения бесконечно удаленных предметов. Поэтому говорят, что полосы равного наклона локализованы в бесконечности. Роль линзы может играть хрусталик глаза, а экрана – сетчатка глаза.

Интерференционные полосы равной толщины. Возьмем теперь пластинку в виде клина. Пусть на нее падает параллельный пучок лучей (рис. 2.13). Но теперь лучи, отразившись от разных поверхностей пластинки, не будут параллельными.
Два до падения на пластинку практически сливающихся луча после отражения от верхней и нижней поверхностей клина пересекаются в точке . Два практически сливающихся луча после отражения пересекаются в точке . Можно показать, что точки и лежат в одной плоскости, проходящей через вершину клина О .

Если расположить экран Э так, чтобы он проходил через точки и , на экране возникнет интерференционная картина. При малом угле клина разность хода лучей, отраженных от его верхней и нижней поверхностей, можно с достаточной степенью точности вычислить по формуле , полученной для плоскопараллельной пластинки, беря в качестве толщину клина в месте падения на нее лучей. Поскольку разность хода лучей, отразившихся от разных участков клина, теперь неодинакова, освещенность будет неравномерной – на экране появятся светлые и темные полосы. Каждая из таких полос возникает в результате отражения от участков клина с одинаковой толщиной, вследствие чего их называют полосами равной толщины.

Таким образом, интерференционная картина, получающаяся при отражении от клина плоской волны, оказывается локализованной в некоторой области вблизи поверхности клина. По мере удаления от вершины клина растет оптическая разность хода, и интерференционная картина становится все менее отчетливой.

Рис. 2.14

При наблюдении в белом свете полосы будут окрашенными, так что поверхность пластинки будет иметь радужную окраску. В реальных условиях при наблюдении, например, радужных цветов на мыльной пленке изменяется как угол падения лучей, так и толщина пленки. В этом случае наблюдаются полосы смешанного типа.

Полосы равной толщины легко наблюдать на плоской проволочной рамке, которую окунули в мыльный раствор. Затягивающая её мыльная плёнка покрывается горизонтальными интерференционными полосами, получившимися при интерференции волн, отразившихся от разных поверхностей пленки (рис. 2.14). С течением времени мыльный раствор стекает, и интерференционные полосы съезжают вниз.

Если проследить за поведением сферического мыльного пузыря, то легко обнаружить, что его поверхность покрыта цветными кольцами, медленно сползающими к его основанию. Смещение колец говорит о постепенном утончении стенок пузыря.

Кольца Ньютона

Классическим примером полос равной толщины являются кольца Ньютона. Они наблюдаются при отражении света от соприкасающихся друг с другом плоскопараллельной стеклянной пластинки и плоско-выпуклой линзы с большим радиусом кривизны (рис. 2.15). Роль тонкой пленки, от поверхности которой отражаются волны, играет воздушный зазор между пластинкой и линзой (вследствие большой толщины пластинки и линзы за счет отражений от других поверхностей интерференционные полосы не возникают). При нормальном падении света полосы равной толщины имеют вид окружностей, при наклонном – эллипсов.

Найдем радиусы колец Ньютона, получающихся при падении света по нормали к пластинке. В этом случае и . Из рис. 2.15 видно, что , где – радиус кривизны линзы, – радиус окружности, всем точкам которой соответствует одинаковый зазор . Величиной можно пренебречь, тогда . Чтобы учесть возникающее при отражении от пластинки изменение фазы на p, нужно добавить к разности хода : , то есть в месте касания пластинки и линзы наблюдается минимум интенсивности, обусловленный изменением фазы на p при отражении световой волны от пластинки.

Рис. 2.16

На рис. 2.16 представлен вид интерференционных колец Ньютона в красном и зеленом свете. Так как длина волны красного света больше, чем зеленого, то радиусы колец в красном свете больше радиусов колец с таким же номером в зеленом свете.

Если в установке Ньютона линзу перемещать вверх параллельно самой себе, то из-за увеличения толщины воздушной прослойки каждая окружность, соответствующая постоянной разности хода, будет стягиваться к центру картины. Достигнув центра, интерференционное кольцо превращается в кружок, исчезающий при дальнейшем перемещении линзы. Таким образом, центр картины будет попеременно становиться то светлым, то темным. Одновременно на периферии поля зрения будут зарождаться и перемещаться к центру новые интерференционные кольца, пока каждое из них не исчезнет в центре картины. При перемещении линзы непрерывно вверх пропадают кольца самых низких порядков интерференции и зарождаются кольца более высоких порядков.

Пример
Просветление оптики

Просветление оптики делается для уменьшения коэффициентов отражения поверхностей оптических деталей путём нанесения на них одной или нескольких непоглощающих плёнок. Без просветляющих плёнок потери на отражение света могут быть очень большими. В системах с большим числом поверхностей, например, в сложных объективах, потери света могут достигать 70 % и более, что ухудшает качество изображений, формируемых такими оптическими системами. Устранить это можно с помощью просветления оптики, которое является одним из важнейших применений интерференции в тонких пленках.

При отражении света от передней и задней поверхности пленки, нанесенной на оптическую деталь, в отраженном свете образуется минимум интенсивности в результате интерференции, а следовательно, в проходящем свете будет максимум интенсивности для этой длины волны. При нормальном падении света эффект будет максимален, если толщина тонкой плёнки равна нечётному числу четвертей длины световой волны в материале плёнки. Действительно, в этом случае потери половины длины волны при отражении не происходит, так как и на верхней, и на нижней поверхностях пленки волна отражается от границы раздела среды оптически менее плотной и оптически более плотной. Поэтому условие максимума интенсивности примет вид . Отсюда получим .

Изменяя толщину просветляющей плёнки, можно сместить минимум отражения в различные участки спектра.