Летающие танкеры и "воздушные авианосцы". Алюминиевый жесткий дирижабль-самолет Aeroscraft совершат первый испытательный полет Дирижабли на войне

Группа европейских специалистов предложила концепт необычного летательного аппарата, сочетающего в себе возможности самолета, вертолета и дирижабля. Гибрид имеет небольшую длину, при этом он оснащен винтовыми двигателями, расположенными сзади. В центре ESTOLAS есть винт, похожий на винт вертолета. Корпус почти полностью создан с использованием легких композитных материалов, а внутренности заполнены гелием, сообщает Gizmag.

Подобная конструкция позволяет ему взлетать и совершать посадку на небольшой скорости на короткой взлетно-посадочной полосе. Более того, даже если нет соответствующей взлетно-посадочной полосы, гибрид может создавать воздушную подушку, приземляясь, используя колесно-лыжное шасси, на любых естественных поверхностях: полях, болотах, водоемах и снегу.

Инженеры работают над четырьмя гибридами различного размера. Их грузоподъемность составит от 3 до 400 т.

ESTOLAS планируется применять в самых разных сферах. Его можно использовать в военной сфере, для спасательных операций, перевозки грузов, в туристических целях и т.д. Кроме того, гибрид будет альтернативой обычным самолетам в тех районах, где отсутствуют взлетно-посадочные полосы.

Прототип ESTOLAS уже создан. В ближайшее время он будет испытан в аэродинамической трубе.

За счет чего дирижабли держатся в воздухе

Самое главное в дирижабле - оболочка, заполненная газом легче воздуха, за счет которой создается гидростатическая сила , выталкивающая дирижабль вверх. Этим они похожи на воздушные шары, но в отличие от них дирижабли могут не только перемещаться вверх-вниз в океанах воздуха, но и свободно двигаться по горизонтали, вдоль поверхности земли - даже без попутного ветра.

В зависимости от того, чем наполнена их оболочка, дирижабли бывают двух видов: тепловые - их оболочку наполняют нагретым воздухом (его плотность меньше плотности окружающего атмосферного воздуха) - и газовые. Раньше газовые дирижабли заполняли водородом - самым легким из газов, но из-за инженеры перешли на соседа водорода по таблице Менделеева - инертный газ гелий.

Еще дирижабли классифицируют по типу конструкции. Они могут быть мягкие - их оболочка напоминает огромный шар, форма которого поддерживается исключительно давлением газа. Могут быть полужесткими, когда нижняя часть оболочки заключена в металлический каркас, придающую жесткость всей конструкции. И наконец, дирижабли бывают просто жесткие - тогда у них есть фиксированная форма, поддерживаемая каркасом.

Кстати, классическая сигарообразная форма свойственна далеко не всем дирижаблям: они бывают эллипсоидными, тороидальными, линзообразными, а иногда напоминают летающие тарелки.

Как управлять дирижаблем

По вертикали дирижабль перемещается, изменяя свою подъемную гидростатическую силу. В тепловых дирижаблях можно менять температуру закачанного воздуха, из-за чего меняется его плотность и, соответственно, подъемная гидростатическая сила. В газовых же дирижаблях внутри одной большой оболочки есть емкости поменьше - баллонеты , в которые можно закачивать или откачивать из них атмосферный воздух, управляя таким образом общей плотностью газа внутри дирижабля.

Для движения вдоль поверхности земли дирижабли снабжают двигателями внутреннего сгорания, создающими горизонтальную тягу. Кроме этого, дирижаблям придают обтекаемую аэродинамическую форму, и поэтому во время полета на них начинает действовать аэродинамическая подъемная сила - сродни той, что действует на крыло самолета.

Еще у дирижаблей обычно есть несколько баллонет в кормовой и носовой части судна. Это дает дополнительное пространство для маневра: команда дирижабля может, накачивая баллонеты, наклонять воздушное судно либо «вперед», либо «назад».

Важно понимать, что хорошо нагруженный дирижабль уже далеко не всегда легче воздуха, и тогда помимо выталкивающей аэростатической силы держаться в воздухе ему помогают дополнительные моторы с вертикальной тягой, а также подъемная аэродинамическая сила. Так что управление дирижаблем - дело непростое. Команде нужно следить за наполнением оболочки и баллонет, работой разнообразных двигателей и управляться с многочисленными снастями воздушного судна, регулирующими аэродинамическую силу.

Что такое цеппелины

Цеппелины - это в каком-то смысле «ксероксы». В английском языке слово zeppelin означает «дирижабль», но в реальности это только одна марка дирижаблей жесткой конструкции, производившихся немецкой фирмой Zeppelin GmbH с 1899-го по 1938 год и названных в честь своего создателя графа Фердинанда Цеппелина. Всего немцы сделали 130 цеппелинов: часть поставили в армию, а часть - для гражданских перевозок людей и грузов.

Больше всего часов среди всех цеппелинов налетал LZ 127 «Граф Цеппелин». Это был огромный дирижабль объемом 105 тысяч кубических метров, длиной около 236 метров и с максимальным диаметром 30 метров (для сравнения: высота типичной пятиэтажки-хрущевки составляет 15-20 метров). Под килем его оболочки было подвешено несколько гондол для двигателей, а также большая гондола для пассажиров и экипажа, в которой среди прочего помещалась капитанская рубка, технические помещения, десять двухместных кают, просторная кают-компания и отдельное помещение с умывальниками.

Перелеты на дирижаблях вообще и цеппелинах в частности были гораздо комфортней, чем на тогдашних самолетах (да и большинстве современных тоже). Конечно, конструкторы старались снизить загрузку воздушного судна, но все-таки возможностей из-за колоссальной грузоподъемности дирижаблей у них было куда больше, чем у конструкторов самолетов. Иногда это приводило к странным компромиссам: например, на последователе LZ 127 - LZ 129 «Гинденбург» - в кают-компании было установлено «облегченное» фортепиано, сделанное из авиационного сплава дюралюминия .

Всего LZ 127 налетал 1,7 млн километров или 17 200 часов. Суммарно он перевез 13 000 пассажиров, совершил 590 полетов в разные страны мира и 143 раза пересек Атлантику.

Дирижабли - это опасно?

«Граф Цеппелин» был наполнен водородом и отлетал без серьезных аварий все девять лет своей службы, пока его не разобрали на металл. Но уже тогда немцы понимали, что это очень опасно, и поэтому «Гинденбург» был заложен как газовый дирижабль, наполненный гелием. В реальности все получилось по-другому. Нужное количество газа тогда можно было купить только в США, а американцы ввели эмбарго на экспорт гелия. После немецкая сторона договорилась об особых условиях покупки газа, но за это время к власти в Германии пришло НСДАП, и в результате нацисты запретили импорт из Америки дорогостоящего гелия, который вполне можно было заменить, по их мнению, собственным водородом.

В результате огромный «Гинденбург» (он был еще больше «Графа Цеппелина» - 200 тысяч кубометров объема, чуть больше был только последний цеппелин LZ 130) немного переделали и заполнили водородом. Во избежание опасности немцы даже ввели на дирижабле некоторые строгие правила: у всех пассажиров и команды перед посадкой изымались зажигалки, спички и другие источники огня, а курить на судне можно было только в курилке, отделенной от остальных помещений газовыми клапанами. Но ничего из этого не помогло вечером 6 мая 1937 года.

К тому времени «Гинденбург», запущенный 4 марта 1936 года, совершил уже 63 полета, и новый мало отличался от предыдущих. Дирижабль вылетел из немецкого города Франкфурта-на-Майне, пересек Атлантику, пролетел над Нью-Йорком (капитан даже провел «Гинденбург» в максимальной близости от Эмпайр-стэйт-билдинг - так чтобы пассажиры и горожане в восторге помахали друг другу руками) и отправился на посадку на авиабазу Лейкхёрст, примерно в 135 километрах к юго-западу от Нью-Йорка. Там была ненастная погода, и дирижабль некоторое время кружился над базой, но потом ему разрешили посадку и он успешно пришвартовался к дирижабельной мачте.

Спустя несколько секунд раздался взрыв, и, загоревшись, дирижабль в несколько минут осел на землю. На борту было 97 человек, 36 из них погибло. Кого-то раздавила пылающая конструкция, кто-то получил несовместимые с жизнью ожоги, а некоторые разбились, когда в панике прыгали с дирижабля на землю. Позже комиссия постановила, что авария была вызвана, с одной стороны, разгерметизацией одного из баллонов с водородом, смешавшимся с воздухом, а с другой - искрой, проскочившей в этой взрывоопасной атмосфере из-за наэлектризовавшейся во влажном воздухе непогоды оболочки.

В истории дирижаблестроения были и более страшные катастрофы. Например, в 1933 году в Атлантику из-за ошибок пилотирования упал наполненный гелием американский военный дирижабль USS Akron (тогда погибло 73 из 76 людей, большинство - из-за обморожения). Но именно крушение «Гинденбурга» стало началом конца дирижаблей. Катастрофа болезненно ударила по имиджу фашистской Германии. Немцы сначала запретили своим дирижаблям перевозить пассажиров и совершать любые международные полеты, а потом и вовсе свернули производство цеппелинов и пустили последние из них на металлолом.

Во Вторую мировую американцы еще использовали дирижабли в военных целях, но это был уже закат былой славы.

Дирижабли на войне

Да, в свое время эти неповоротливые конструкции, напоминающие огромных китов, были весьма опасным оружием. В 1908 году Герберт Уэллс в книге «Война в воздухе» описал бомбардировки с дирижаблей, уничтожающие целые города, и скоро его предсказания стали сбываться.

В начале Первой мировой войны дирижабли были почти неуязвимы. Они летали на такой большой высоте, что их было сложно подбить и с земли, и с воздуха - истребителям того времени забираться на такую высоту было тяжело. В результате те же цеппелины могли почти безнаказанно атаковать противника.

Самый известный случай - это бомбардировка Лондона вечером 8 сентября 1915 года. Около двух часов дня с немецкой авиабазы вылетело три дирижабля, по пути два из них развернулись из-за внештатных ситуаций, а третий к восьми часам вечера достиг побережья Британских островов. Там он дождался темноты и дальше, на высоте 2800 метров со скоростью около 100 км/ч, никем не замеченный добрался до Лондона. В городе тогда были введены правила световой маскировки, но на деле их никто не соблюдал. Ярко освещенные улицы, набережные - дирижабль на фоне этой засветки так и долетел незамеченным до самого центра города. В результате бомбардировок погибло 22 человека и было ранено 87 человек. Британцы поняли, что они не так неуязвимы, как казалось.

Позднее войска все-таки смогли противостоять дирижаблям. Зенитные орудия стали дальнобойнее, расчеты ПВО работали точней и аккуратней, а самолеты научились подниматься над дирижаблями и сбрасывать на них бомбы. К концу Первой мировой дирижабли уже не были таким грозным оружием и их военные функции стали меняться. Во Второй мировой войне ВМФ США использовали мягкие дирижабли объемом 12-18 тысяч кубических метров уже не для бомбардировки кораблей, городов и разнообразных наземных объектов, а для борьбы с подводными лодками. Дирижабли выслеживали их и атаковали глубинными бомбами, а сами при этом по понятным причинам оставались в относительной безопасности.

Продолжали использовать дирижабли и после Второй мировой - чаще всего для радиолокационной разведки.

Аэропорты для дирижаблей

На заре дирижаблестроения с посадкой дирижаблей все было очень сложно. С судна выбрасывалось несколько 200-метровых канатов, а на земле причальная команда, состоявшая из десятков или иногда сотен людей, должна была связать их с канатами на швартовочной мачте, с помощью лебедки подтянуть к ней огромный дирижабль и зафиксировать его нос в стыковочном гнезде. После этого дирижабль мог как флюгер вращаться вокруг своей мачты.

Соответственно, для всего этого нужны были и специальные мачты, и умелая команда, которая могла аккуратно справиться с этой физически сложной задачей. Но постепенно техника развивалась, причаливание стало полуавтоматическим и гораздо более простым.

Другое дело - ангары для наземной стоянки дирижаблей. Из-за огромных размеров самих воздушных судов они должны быть настолько большими, что ангары дирижаблей грузоподъемностью несколько сотен тонн в тысячи раз превышают размеры ангаров для самолетов, и никакие складские или подсобные помещения их «при случае», конечно, заменить не могут.

Дирижабли против самолетов: минусы и плюсы

Реальность показывает, что минусов у дирижаблей больше. Во-первых, грузоподъемные дирижабли всегда огромных размеров (гидростатическая сила маленькая, и, для того чтобы поднять с ее помощью внятную полезную нагрузку, объем рабочего газа в оболочке должен быть очень большим). Во-вторых, из-за большого аэродинамического сопротивления у дирижаблей маленькая предельная скорость - не больше 150 км/ч. Кроме того, оболочки дирижаблей постоянно рвутся и нарушаются, а для пребывания дирижаблей на земле нужны огромные ангары. В результате обычные люди в повседневной жизни с дирижаблями сталкиваются только на авиавыставках или разных спортивных событиях, где их традиционно используют в качестве носителей рекламы.

С другой стороны, у дирижаблей есть свои плюсы: их пребывание в воздухе почти бесплатно (поскольку они держатся за счет гидростатической силы) и мало ограничено по времени (советский B-6 поставил рекорд непрерывного полета - 130 часов); грузоподъемность дирижаблей гораздо меньше ограничена конструкционными свойствами материалов корпуса, чем у самолетов (больше оболочка с газом - больше груза можно поднять); дирижабли не требуют взлетно-посадочной полосы; используют значительно менее мощные двигатели и, соответственно, меньше загрязняют воздух; ход дирижаблей гораздо стабильней, чем ход вертолетов (поэтому их можно использовать как «воздушные такси»).

Где сейчас используют дирижабли и где еще они могут найти применение

Про некоторые области мы уже писали выше. Военные используют дирижабли для радиоразведки и наведения на мобильные воздушные цели. Многие частные компании делают их эффектными средствами рекламы, а возродившаяся недавно компания Zeppelin NT «пристроила» их в туризм: немецкие дирижабли катают туристов над живописным озером Бодензее. Кроме того, дирижабли часто используют в спортивных целях.

Лучше всего дирижабли подходят для удаленного мониторинга. Например, сейчас для облета протяженных линий электропередач или трубопроводов используют вертолеты, но в перспективе дирижабли с их продолжительными непрерывными полетами подходят для этих целей гораздо лучше, особенно в условиях колоссальных территорий России.

Что касается будущего, то здесь мечтают о стратосферных дирижаблях, которые можно будет запускать на высоту 25-30 километров. Их можно превратить в своеобразные геостационарные спутники с теми же самыми функциями, что у обычных спутников, но одним существенным отличием: дирижабль можно сравнительно легко опустить на землю, обслужить (поменять, к примеру, оборудование) и снова запустить в стратосферу, где его работа будет поддерживаться энергией солнечных батарей. Такие проекты есть у некоторых американских, японских и даже российских компаний - например, «Росаэросистема» проектирует стратосферный дирижабль «Беркут».

Другой пример: русское воздухоплавательное общество и группа компаний «Метрополь» планируют использовать тепловые дирижабли (то есть работающие на теплом воздухе, а не на газе) для запуска легких космических аппаратов. Их замысел такой: дирижабль с космическим аппаратом на борту взлетает на высоту около 10 км, откуда аппарат запускается на орбиту. В рамках этого проекта дирижабль «Полярный гусь» уже побил рекорд высоты для тепловых дирижаблей и поднялся на высоту 9818 метров.

Также недавно стало известно, что один из основателей компании Google Сергей Брин строит вместе с бывшим директором программ NASA Алау Уэстоном гигантский дирижабль. Проектом занимается компания Planetary Ventures, дирижабль располагается в одном из ангаров, купленных у NASA, но его предназначение пока совершенно неизвестно. Кто знает, может быть, это один из предвестников скорого возвращения величественных воздушных китов на наше небо. Ну или просто ностальгическое хобби.

Правообладатель иллюстрации sbna Image caption

Уникальный летательный аппарат потерпел крушение на полигоне в Англии всего через сутки после успешного испытательного полета.

Самый длинный в мире летательный аппарат Airlander 10, который представляет собой гибрид между самолетом и дирижаблем, внезапно разломился пополам и рухнул на землю на аэродроме Кардингтон в Дербишире.

  • Самый длинный в мире летательный аппарат совершил первый полет
  • Самолет-дирижабль Airlander 10 получил повреждения при посадке

Компания Hybrid Air Vehicles Ltd, которая владеет аппаратом, заявила, что он, видимо, был сорван порывом ветра со стыковочной мачты, после чего аварийная система сбросила давление в резервуарах с гелием, которые обеспечивают его подъемную силу.

Правообладатель иллюстрации sbna

На борту аппарата в тот момент не было людей, но два человека на земле получили легкие травмы.

В момент аварии аппарат должен был быть прикреплен к посадочной мачте.

Правообладатель иллюстрации Hybrid Air Vehicles Image caption Гибридные аппараты такого типа разрабатываются сейчас в нескольких странах мира, включая США и Британию

"Аварийная система предназначена для предотвращения ущерба окружающей среде в подобных обстоятельствах, - говорится в заявлении компании. - В настоящее время оболочка аппарата лежит на земле и закреплена на краю аэродрома. Запасы гелия и топлива на борту аппарата не представляют опасности".

"Мы проводим испытания совершенно нового типа летательных аппаратов, и подобные происшествия могут происходить в ходе разработки".

"Мы проведем расследование причин происшествия и оценим объем необходимых восстановительных работ, которые будут проведены в предстоящие недели", сказано в заявлении.

В пятницу, накануне происшествия, аппарат Airlander 10 взлетел с аэродрома Кардингтон в 15.11 по Гринвичу и спустя час приземлился там же после успешного испытательного полета.

После этого компания Hybrid Air Vehicles Ltd сообщила, что приступает к новой фазе более длительных испытательных полетов. Такие аппараты, говорилось в заявлении компании, вскоре будут летать выше, быстрее и дальше.

В августе 2016 года при одном из первых испытательных полетов этот же аппарат поднялся на слишком большую высоту, и его посадочный канат запутался в линии высоковольтной передачи. Аппарат длиной 92 метра свалился в пике и ударился о землю. Никто при этом не пострадал.

Правообладатель иллюстрации Beds Cambs Herts Road Policing Image caption Гибридный аппарат лежит сейчас на краю старого аэропорта Кардингтон

Британская авиационная служба, расследующая инциденты такого рода, сообщила позднее, что посадочный канат оставался неубранным после первой неудачной попытки посадить аппарат.

Летательные машины подобного типа обычно представляют собой сочетание положительных сторон аппаратов двух типов - самолёта и аэростата, используя аэродинамическую подъёмную силу при подъёме и затем находясь в воздухе за счет размещенных в корпусе и крыльях резервуаров с гелием.

Airlander 10, являющийся гибридом самолета, дирижабля и вертолета, весит 20 тонн. Его разработчик – компания Hybrid Air Vehicles - утверждает, что судно способно подняться на высоту в шесть километров, разогнаться до 148 километров в час, оставаться в небе до пяти дней, перевозить грузы до 10 тонн и садиться на воду.

Airlander 10 планируют использовать для разведки, обеспечения связи, доставки гуманитарной помощи и пассажирских перевозок.

Современный технический прогресс дает дирижаблям шанс возродиться, что для России может быть крайне полезным. Обладающие целым рядом преимуществ, в том числе экологичностью, экономичностью, значительной грузоподъемностью и другими, в настоящее время дирижабли могут стать эффективным средством решения многих военных задач . О возможных областях применения дирижаблей в области обороны свое мнение на страницах «Оружие России» высказывает заместитель директора Института политического и военного анализа Александр Храмчихин.

Дирижабли после ряда громких катастроф в 30-е годы, казалось, навсегда ушли в прошлое, полностью вытесненные самолетами, а затем и вертолетами. Однако технический прогресс дает дирижаблям шанс возродиться, помогая раскрыть лучшие качества этих летательных аппаратов. Для России они могут оказаться крайне полезными.

Современное дирижаблестроение в России

К преимуществам дирижаблей относятся следующие :

Во-первых , дирижабли чрезвычайно экологичны, причем не только в плане загрязнения воздуха, но и в плане очень низкого уровня шума.

Во-вторых , они весьма экономичны.

В-третьих , они могут быть чрезвычайно грузоподъёмными, значительно грузоподъёмнее самых больших транспортных самолетов.

В-четвертых , они не требуют больших и дорогостоящих ВПП, а могут садиться практически на любую относительно ровную поверхность.

В-пятых , время их нахождения в воздухе может достигать суток и недель, иногда речь идет даже о месяцах и годах. Кроме того, они способны висеть на одном месте, причем тоже очень долго.

В-шестых , дирижабль обладает малой заметностью в инфракрасном и радиолокационном диапазонах.

В-седьмых , подготовить пилота дирижабля гораздо проще, чем пилота самолета или вертолета.

Основной недостаток дирижабля – низкая скорость, примерно 100 км/ч . Но это вполне сопоставимо со скоростями автомобилей и поездов, при этом, в отличие от них, дирижабли не привязаны к дорогам.

Несущим газом нынешних дирижаблей вместо чрезвычайно взрывоопасного водорода (собственно, именно он и погубил дирижабли первой половины ХХ века) стал совершенно негорючий инертный гелий.

Самолет типа «летающее крыло», это нечто вроде гибрида дирижабля и самолета под названием Stingray

Тканевую оболочку, герметизируемую каучуком, заменили новые синтетические материалы (кевлар, полиуретан, майлар, дакрон и т.д.), что в несколько раз снизило массу оболочки и на два порядка – диффузию газа сквозь нее (это очень важно в связи с тем, что гелий обладает высокой текучестью, это его главный недостаток). Оболочка изготавливается методом компьютерного проектирования с помощью лазерных раскроечных машин, а гондолы и грузовые отсеки дирижаблей — из композитов, что также значительно снижает их массу.

При этом кроме классических дирижаблей, где подъемную силу создает несущий газ, появились гибридные дирижабли, где дополнительную подъемную силу обеспечивают либо несущие поверхности (крылья), либо винты вертолетного типа . Например, в США был создан дирижабль «Мегалифтер», который, фактически, представлял собой транспортный самолет С-5, но средняя часть фюзеляжа у него была заменена полужесткой оболочкой дирижабля.

Гибридный дирижабль «Гелистат»

Другой американский дирижабль «Гелистат» представлял собой оболочку, к которой были прикреплены 4 вертолета SH-34J. Один из них управлялся пилотом, остальные – дистанционно. Гибриды сложнее и дороже классических дирижаблей, зато у них выше скорость (до 400 км/ч) и маневренность .

На небольших дирижаблях используются поршневые двигатели, как наиболее экономичные и обеспечивающие высокую маневренность. На более крупных аппаратах применяются газотурбинные двигатели. При этом рассматриваются разного рода экзотические проекты типа двигателей на солнечной энергии или даже ядерных реакторов.











Военные уже проводят конкурсы по дизайну военных дирижаблей

Основные военные задачи, которые могут решать дирижабли, достаточно очевидны и определяются их достоинствами. В первую очередь, это перевозка войск и грузов на большие расстояния.

Не менее очевидно использование дирижаблей для дальнего радиолокационного обнаружения (ДРЛО) , причем здесь речь идет не о привязных беспилотных аэростатах, которые давно применяются в США, Италии, Израиле для охраны границ, а именно об автономных дирижаблях (которые, впрочем, тоже могут быть беспилотными).

В России была разработана беспроводная аэростатная радиосеть (БАРС)

Принципиальная схема работы комплекса БАРС

Кроме того, дирижабли могут успешно использоваться в борьбе с подлодками . Наконец, эти аппараты могут стать очень эффективными ретрансляторами, отчасти заменяя в этом качестве спутники связи, будучи в разы дешевле ИСЗ. Экономичность дирижабля определяется тем, что у него удельный расход топлива в 3–4 раза меньше, чем у самолета, и в 14–15 раз – чем у вертолета. При этом правда, есть проблема гелия, который достаточно дорог.

Впрочем, чем больше будет дирижаблей и чем крупнее они будут по размерам, тем рентабельнее станет добыча гелия. Размер имеет значение и по другим причинам. Один кубометр гелия при обычном атмосферном давлении обеспечивает подъем 1 кг груза . Поэтому, для подъема одной тонны полезной нагрузки (с учетом веса дирижабля) требуется наполнить оболочку 20 тыс. куб. м гелия.

Таким образом, рентабельный грузовой дирижабль по определению должен быть крупным (тем более, что при более высокой грузоподъемности ниже стоимость перевозок). Причем, как показывает сегодняшняя практика (например, известной авиакомпании «Волга-Днепр»), воздушные перевозки крупногабаритных тяжелых грузов – вещь, очень востребованная на рынке, на нее не влияет никакой кризис.

Самый крупный дирижабль в мире – полужесткий аппарат немецкого производства Zeppelin NT LZ 07

Кроме того, чем крупнее летательный аппарат, тем меньше он подвержен действию ветра: сила давления ветра на оболочку пропорциональна квадрату линейных размеров, а сопротивление ветру пропорциональна их кубу . Это даёт возможность строить дирижабли грузоподъёмностью до 2000 т, что почти в 20 раз выше, чем у крупнейших транспортных самолетов.

На сегодняшний день самый крупный дирижабль в мире – полужесткий аппарат немецкого производства Zeppelin NT LZ 07, который осуществляет туристические рейсы, беря на борт 12 пассажиров и двух членов экипажа.

Skyship 600, предоставленный Службой управления дирижаблями и использованный на Олимпийских играх, представлял собой 13-местный дирижабль, наполненный гелием и имеющий моторы Porsche 930

Дирижабль Skyship-600, который также используется для туристических полетов, перевозит 10 пассажиров и двух членов экипажа. Кроме того, имеется масса экспериментальных аппаратов и еще больше грандиозных замыслов. Так, в 1996 году в США было сформировано специальное подразделение под названием JAPO (Joint Aerostat Project Office). Оно занималось разработкой разведывательных систем, размещаемых на аэростатах.

Американцы вовсю развивают военные системы на базе аэростатов. Помимо JLENS (Joint Land Attack Cruise Missile Defense Elevated Netted Sensors) от Ratheyon испытывают еще (правда, пока не особо удачно) локхидовский HALE-D (High Altitude Long Endurance-Demonstrator) — высотный ретранслятор, способный длительное время зависать на большой высоте (до 10км) и обеспечивать связью военные подразделения .

В 1997 году ему была поставлена задача создать систему JLENS (Joint Land attack cruise missile defense Elevated Netted Sensor system). Она предназначалась для загоризонтного обнаружения воздушных целей (в первую очередь – крылатых ракет) и выдачи данных средствам ПВО/ПРО (ЗРК и истребителям) для их уничтожения. РЛС системы размещались в гондолах 70-метровых беспилотных дирижаблей, способных находиться в воздухе до 30 суток.

В ходе испытаний было выяснено, что дирижабль очень устойчив к повреждениям, даже при попадании в него зенитной ракеты он не падает, как самолет в аналогичной ситуации, а медленно опускается на землю , что обеспечивает сохранность оборудования.

Система ПВО Северной Америки NORAD рассматривала возможность принятия на вооружение дирижаблей ДРЛО (они должны были барражировать на высоте 24 км) для обнаружения крылатых ракет на дальности до 740 км. Рассматривается возможность использования беспилотных дирижаблей для ведения воздушной разведки.

Дирижабль ДРЛО экономичнее самолета АВАКС

Например, в США разрабатывается БПЛА MaXflyer эллипсоидальной формы диаметром 80 м. Имея на борту различное разведывательное оборудование, он может летать в заданном районе на высоте 30 км на протяжении нескольких недель. Главной защитой аппарата станет его крайне низкая радиолокационная заметность.

ВМС Великобритании рассматривают возможность покупки дирижаблей для снабжения британских кораблей и проведения разведывательных операций. Они смогут беспосадочно находиться в воздухе в течение трех недель и перевозить грузы массой до 50 тонн. Командование ВМС Великобритании также рассматривает возможность их использования для борьбы с пиратами.

Американский дирижабль гибридного типа «Аэрокрафт»

Ориентировочно, на каждом летательном аппарате сможет разместиться до 150 коммандос вместе с легкими лодками. Разумеется, не были забыты транспортные аппараты. Например, американский дирижабль гибридного типа «Аэрокрафт» (длина 307 м, высота 77 м) должен был доставлять груз массой до 1000 т (18 ударных вертолетов «Апач» или 8 танков «Абрамс» или 16 БМП «Брэдли») на расстояние 9,3 тыс. км.

Британская фирма ATG разрабатывала дирижабль-катамаран «Скайкэт-1000» длиной также 307 м. При собственной массе он способен доставить полезную нагрузку в 1000 т на 7,4 тыс. км или 600 т – на 16 тыс. км. В США рассматривались и такие экзотические варианты использования дирижаблей, как запуск с них МБР МХ.

Подобные пусковые установки стали бы совершенно неуязвимыми для противника. Еще более экзотичным проектом является использование дирижаблей для вывода грузов в космос. Компания JP Aerospace создавала сложнейшую систему из нескольких гигантских дирижаблей размером в несколько километров. Последний из них, используя ионные двигатели, должен был выходить на низкую околоземную орбиту.

Схема дирижабля «Беркут». Внутри оболочки «Беркута» — пять тканых ёмкостей с гелием. У поверхности земли закачанный в оболочку воздух будет сдавливать емкости, повышая плотность подъемного газа

В России, имеющей хорошие традиции дирижаблестроения, также имеется целый ряд экспериментальных образцов и еще больше проектов. Например, компания «Авгуръ» разрабатывает стратосферный дирижабль «Беркут» длиной 250 м, который может стать альтернативой геостационарных ИСЗ связи. Он может висеть на высоте 20-22 км, при этом для обзора европейской части России достаточно двух таких аппаратов.

Можно отметить, что запасы гелия в России составляют 9,2 млрд. куб. м (треть мирового объема и второе место после США с их 13 млрд. куб. м). Главное же в том, что нам дирижабли могут быть полезны, как никому другому :

Во-первых , как транспортное средство . Для доставки грузов военного и гражданского назначения в восточные регионы страны дирижаблям просто нет цены, только они могут избавить нас от критической зависимости от Транссиба и Севморпути. Это настолько очевидно, что не требует комментариев.

Во-вторых , дирижабли могут стать важнейшим средством ПВО . При этом необязательно ограничивать его применение только ролью разведчика-наблюдателя. Ничто не мешает загрузить дирижабль не только мощной РЛС (которая должна эффективно обнаруживать и самолеты-«невидимки», и крылатые ракеты), но и ракетами «воздух-воздух» для поражения обнаруженных им целей.

Дирижабли могут висеть на высоте 20-30 км над землей, что обеспечит ракетам при запуске очень большую потенциальную энергию, которая хорошо переводится в дополнительную кинетическую. С другой стороны, истребителям противника достать до дирижабля, висящего в стратосфере, будет крайне сложно, если вообще возможно.

К тому же, как было сказано выше, попадание одной-двух ракет не является для дирижабля фатальным, он просто медленно опускается на землю. Несколько десятков дирижаблей ПВО вполне могут стать мощным «кочующим барьером» на воздушных рубежах России, дополняя, а в значительной степени и заменяя истребители и ЗРС. Возможно, что по критерию стоимость/эффективность именно такая система ПВО станет для России наиболее подходящим вариантом.

Испытания новых военных аэростатов «Пересвет»

В-третьих , дирижабль может быть носителем КРВБ большой дальности (нескольких десятков, если не сотен), а также МБР. Аппарат с 1-2 МБР на борту, висящий над Красноярским краем или Якутией, будет абсолютно неуязвим для любого противника. Также из своего воздушного пространства он может наносить удары крылатыми ракетами по наземным и надводным целям.

В-четвертых , благодаря большой грузоподъемности и стратосферной высоте полета дирижабль может нести мощный комплекс РЭБ , позволяющий «задавить» электронику противника на большой территории. В будущем дирижабли могли бы стать носителями и лазерного оружия (боевой лазер, если его создадут, будет, видимо, большим и тяжелым).

С дирижабля в космос (схема)

В-пятых , дирижабли, как уже было сказано, могут заменить ИСЗ связи, будучи гораздо более дешевыми и гораздо менее уязвимыми . В целом, основными препятствиями к полномасштабному возрождению дирижаблей считаются дороговизна гелия и проблема организации базирования.

Однако главная проблема – инерция мышления (это относится не только к России) . Именно она более всего мешает развитию современного воздухоплавания. Страна, которая первой сможет преодолеть эту инерцию, получит очень значительное превосходство над всеми потенциальными оппонентами.


Дизайнер Дафнис Фурнье разработал концепт экологичного авиалайнера будущего, способного преодолевать колоссальные расстояния в стратосфере. Самолет-дирижабль, не используя ни грамма авиатоплива, перемещается в воздушном пространстве благодаря огромной емкости с гелием и четырем электротурбинам, работающим на энергии солнца.


Концепт разработан исключительно как пассажирский транспорт, и основная ставка была сделана на вместимость. Единовременно лайнер может принять на борт 324 человека, не считая экипажа. Длина самолета от носа до хвоста составит 71 метр. По заявлениям автора проекта, самолет будет оснащен четырьмя мощными электротурбинами, разгоняющими лайнер до предельных 750 миль в час.


Концепт больше походит на летательный аппарат, сошедший со страниц научно-фантастического романа. Над фюзеляжем расположена надувная конструкция, которая заполняется гелием, как только аэробус набирает необходимую высоту. Внешняя поверхность своеобразного шара выполнена из гибких солнечных батарей, обеспечивающих самолет энергией для полета.

Французский дизайнер считает, что большинство пассажирских авиалайнеров будущего приобретут именно такой облик, более напоминая дирижабли, нежели привычные «крылатые сигары».


Поскольку основные энергозатраты требуются во время взлета или посадки лайнера, то дизайнером предусмотрены дополнительные батареи. При взлете купол самолета находится в «спущенном» состоянии, для обеспечения наивысших аэродинамических показателей во время набора высоты.


Пока это всего лишь интригующий концепт. Парижанин Дафнис Фурнье не уточняет, как будет перемещаться самолет-дирижабль ночью, а так же не приводит никаких точных цифр и расчетов. Однако, уже сегодня создаются концепты и опытные образцы электрических воздушных транспортных средств, как например