Удельный импульс тяги ракетного двигателя. Беседы о ракетных двигателях

По сценарию фильма и по книге — он снабжён высокоимпульсными ионными двигателями.

Нынешняя ситуация с освоением космического пространства в чём-то похожа на середину XIX века, когда испытанные и проверенные временем технологии парусного флота вдруг оказались не более, чем устаревшими артефактами прошлой эпохи. Когда блистательный русский Черноморский флот, ещё недавно одержавший победу над турками при Синопе, вдруг оказался заперт в гавани Севастополя соединённой эскадрой союзников, а чайные клиперы на «ревущих сороковых», «неистовых пятидесятых» и «пронзительных шестидесятых» сменили юркие китобойные судёнышки, использовавшие первые паровые двигателя.

Тогда оказалось, что вопрос постоянства хода и неподверженности стихии для морского флота встал гораздо острее и насущнее, нежели вариант обуздания силы ветра и демонстрации рекордов скорости последними «Катти Сарк». Тихоходные и неповоротливые, но независимые от силы ветра пароходы всего лишь за неполные полвека окончательно вытеснили парусники на обочину морского дела, оставив за ними роль учебных судов и музеев.

Это была одна из самых радикальных революций в морском деле.
Следующий эволюционный шаг, отказ от использования топлива, как такового и переход на ядерную энергию в морском флоте так и не произошёл: атомные реакторы остались уделом лишь военно-морского флота ведущих мировых держав и «фирменным знаком» российского арктического ледокольного флота.

Похожая ситуация сейчас разворачивается и в освоении космоса. «Грести под парусами» химического топлива дальше в открытый космос уже просто невозможно — но вот на что поменять старые и проверенные химические ракеты — по-прежнему является вопросом конструктурских работ и инженерных изысканий.


Во-первых, надо сказать, почему человечество столь нежно полюбило ракеты с химическим топливом.
Надо сказать, что это скорее был «брак по расчёту», нежели какой-то «любовный союз». Ракета с химическим топливом и была, и есть лишь одним из немногих вариантов оторвать хоть что-то от поверхности нашей Земли. Для ракет, стартующих с земной поверхности, существенной является гравитационная помеха, о неизбежности которой я уже как-то говорил .

Масса двигателей, о которых я расскажу дальше по тексту статьи, гораздо больше подходят для условий космоса, но они практически бесполезны для старта с Земли — их тяга гораздо меньше их собственного веса, не говоря уже о массе потребного для них топлива или весе полезной нагрузки. В результате соотношение реактивной тяги двигателей (T) к массе всей ракеты (W) у таких двигателей меньше единицы (T/W<1) и ничего поднять с поверхности Земли они не могут.

Стендовые испытания двигателя J-2X, аналога двигателя J-2 лунной ракеты «Сатурн-V». Именно этот двигатель отправлял «Аполлоны» у Луне. Но это было, в общем-то, вынужденное решение.

Однако, в реальности физики, химии и матераловедения достаточно сложно построить двигатель и с высокой удельной тягой, и с высоким удельным импульсом.
И, если понятие «тяги» нам интуитивно понятно (ну можешь поднять 200 килограммовую штангу — у тебя хорошая «тяга», а не можешь — так, задохлик. В общем, всё как у людей), то понятие «удельного импульса» всё же лучше объяснить.
Если тяга — это условная «сила» двигателя, то удельный импульс — это, скорее, его «выносливость», то есть возможность достаточно долго сообщать полезной нагрузке дополнительный импульс на ограниченных запасах топлива.

Измеряется удельный импульс или в секундах (если использовать «техническую» систему единиц МКГСС) или в метрах в секунду (если использовать «научную» систему единиц СИ).
Различается и физический смысл «секунд» (как единиц измерения времени) и «метров в секунду» (как единиц измерения скорости), хотя он описывает одни и те же параметры условного реактивного двигателя, хоть и с разных сторон.

В случае выражения удельного импульса двигателя в секундах получается, что «удельный импульс — это количество секунд , которое данный двигатель проработает на 1 килограмме топлива, создавая тягу в одну килограмм-силу» (МКГСС).
Если же вы выражаете удельный импульс двигателя в метрах в секунду, то у вас получается более сложный вывод, основанный на утверждении о том, что «удельный импульс — это отношение тяги двигателя в ньютонах к секундному расходу массы топлива» (СИ).
В системе СИ размерность ньютона выражается как кг-м/c 2 и после сокращения с дополнительными кг/c в знаменателе вы получите размерность скорости — метры в секунду .
Интересно, что получившееся в итоге значение скорости для удельного импульса будет практически строго соответствовать скорости истечения продуктов сгорания из сопла любого двигателя. Так, например, удельный импульс современных жидкостных реактивных двигателей (ЖРД), составляющий около 450 секунд, соответствует скорости истечения рабочего тела (продуктов сгорания) в 4500 метров в секунду.


Испытания водородного ЖРД. Скорость истечения продуктов сгорания — около 4500 м/c, удельный импульс — около 450 секунд.

При этом, что важно, в отличии от выражения его в метрах в секунду, в случае задания вами удельного импульса в секундах он никак не оказывается связан с фактическим временем работы двигателя. Он лишь показывает удельный расход топлива двигателем, который может работать, в зависимости от наличия топлива, как дольше времени удельного импульса, так и меньше его.

На первый взгляд, скорость истечения рабочего тела в 4500 метров в секунду (13М) — это в тринадцать раз больше скорости звука на уровне моря (340 м/с). Громадная скорость для нашего обыденного восприятия и именно поэтому все сопла ЖРД делают расширяющимися, сверхзвуковыми соплами Лаваля.

Выше скорости истечения в паре «водород-кислород» получали только на весьма экзотической троице «литий-водород-фтор» ещё в 1968 году . Но прибавка к удельному импульсу (542 секунды) и скорости истечения (5 320 м/сек) на таком токсическом и взрывоопасном топливе была очень незначительной, в силу чего от использования трёхкомпонентного топлива с фторным окислителем в итоге отказались.

Ещё более «тупыми» и «невыносливыми» оказываются (по сравнению с ЖРД) ракетные двигатели на твёрдом топливе (РДТТ). Эти усовершенствованные пороховые шутихи оказываются «спринтерами с коротким дыханием» — большинство существующих РДТТ имеют удельный импульс в районе 250-270 секунд, что соответствует скорости истечения продуктов сгорания всего в 2500-2700 м/c. Зато РДТТ могут обеспечивать громадную начальную тягу, в силу чего их и используют как стартовые ускорители.


Наземные испытания стартового ускорителя «Спейс Шаттла». Пламени выше крыши, тяги — завались, а удельного импульса — чуть-чуть.

Но много это или мало — 4500 метров в секунду или 450 секунд?
Даже для старта с Земли на околоземную орбиту с использованием одноступенчатого вывода (по-английски это называется SSTO — single stage to orbit) этого оказывается сугубо недостаточно. Приходится мастерить различные многоступенчатые схемы, в результате чего современные ракеты выводят на орбиту грузы в составе двух, а иногда — и трёх ступеней.

При этом все нынешние идеи «допилить химический паровоз в стремительную сверхсветовую ракету» всё равно упираются в ограниченность возможностей РДТТ и ЖРД и в пресловутую формулу Циолковского, в которую удельный импульс входит в качестве множителя:

Здесь I — тот самый удельный импульс двигателя.
Поскольку он связан с отношением начальной (M 1 ) и конечной (М 2 ) масс летательного аппарата через натуральный логарифм, то получается, что увеличение удельного импульса двигателя в 2 раза при заданной конечной скорости уменьшает в те же два раза натуральный логарифм отношения M 1 к М 2 или же, чтобы было понятнее, изменяет соотношение M 1 к М 2 в виде второй степени (или квадратного корня) от изначального их соотношения.
Поскольку задаваемая зависимость у нас степенная, различия по удельному импульсу в 4 или 8 раз уже зададут более высокие степени и корни, в результате чего соотношение M 1 к М 2 для двигателей, отличающихся по удельному импульсу в 4 и в 8 раз, уже будет составлять четвёртую или восьмую степень оригинального соотношения, соответственно.


«Ядерный космолёт» МГ-19 — птица, опередившая своё время.

Пока же мы плотно сидим на химическом топливе для ЖРД и РДТТ наших ракет — себестоимость наших грузов даже на низкой околоземной орбите будет составлять тысячи долларов за каждый килограмм груза.

Но какого рода двигатели нам нужны, если вы собрались лететь не просто на околоземную орбиту, а к Марсу или к Луне? И если мы уже столь высоко ценим каждый килограмм груза на низкой околоземной орбите и слабо представляем себе варианты выхода из этого порочного круга?

Отвечу: нам нужен двигатель гораздо более высокоимпульсный, нежели химические двигатели наших современных, «земных» ракет.
Вот вам пример того, как натуральный логарифм в формуле Циолковского влияет на соотношение масс и на общую массу будущего марсианского корабля, в случае использования им различных двигательных систем:


Сравнение различных вариантов марсианского транспортного корабля: на химическом топливе, пара «водород-кислород» (5900 тонн, 460 секунд удельного импульса, 4600 м/с истечения), ядерный твердотельный двигатель (3500 тонн, 950 секунд удельного импульса, 9500 м/c истечения) и с электрическим ракетным двигателем (250 тонн, 3000-10000 секунд удельного импульса, скорость истечения 30-100 км/c).

Как вы видите, вариант марсианской эпопеи на химическом горючем практически нереален: если принять в качестве допущения, что на химическом топливе обеспечат нам себестоимость грузов на низкой околоземной орбите в 1000 долларов за килограмм, то 5900 тонн марсианского корабля обойдутся Земле в 5,9 миллиардов долларов только в стоимости вывода на орбиту (без стоимости самого корабля и НИОКР по нему).
А выводить его надо будет доброй полусотней запусков уникальных и сверхтяжёлых ракет.

Не сильно спасает ситуацию и межпланетный корабль с твердотельным ЯРД, над разработкой которого США и СССР в 1960е-1970е годы.
Полученный тогда на американском проекте NERVA и в испытаниях советского РД-0410 удельный импульс в районе 850-950 секунд, конечно, экономит вес марсианского корабля, но всё равно заставляет думать минимум о тридцати запусках тяжёлых ракет носителей и длительной сборке корабля на орбите.

И, наконец, различные концепции электрических ракетных двигателей с их возможными импульсами от 3000 до 30 000 секунд, всё же дают нам достаточно оптимизма в вопросе будущего освоения Солнечной системы. Да, не , и не с прямоточным термоядерным ракетным двигателем (ТЯРД), но всё-таки — реальный корабль, массой всего лишь в 250 тонн, который уже можно собрать на орбите Земли, даже опираясь на наши несовершенные химические ракеты, с мощными, но слабоимпульсными ЖРД и РДТТ.


Выбор источника энергии двигателей, между солнечными батареями и ядерным реактором для будущего марсианского корабля — пока что открыт. Но вот даже к Юпитеру уже, скорее всего, надо лететь с реактором на борту.

Каким из многих видов электрических ракетных двигателей будет снабжён будущий марсианский транспортный корабль — пока что вопрос открытый.
Если в качестве источника электроэнергии на борту, в общем-то, есть только две возможности: солнечные батареи и ядерный реактор, то в качестве двигателей могут использоваться очень разные высокоимпульсные электрические ракетные двигателя. Это и ионные двигатели, и плазменные (к которым относится и уже упомянутый по ссылке VASIMR), и различные варианты электростатических или электротермических двигателей.

Все эти двигатели уже обеспечивают удельный импульс от 3 000 до 10 000 секунд, а некоторые проекты обещают и 30 000 секунд удельного импульса, что соответствует скорости истечения рабочего тела в безумные 300 километров в секунду.

В прошлом году сообщено , что самые мощные и тяговооружённые на сегодняшний день в семействе электрических ракетных двигателей ионные двигатели перешагнули рубеж в 10 000 секунд, показав удельный импульс в 14 600 секунд.
Неизвестно, насколько ресурсными оказались эти двигатели, но, в любом случае, новости об совершенствовании «ионников» не могут не радовать.


В ионном двигателе нет брутальности ЖРД или РДТТ, но из его зрачка на вас смотрит вся Солнечная система. НАША система.

Что приятно, успехи в деле испытания ионных двигателей есть и в России.

О параметрах этих изделий можно судить по публикации в журнале «Труды МАИ» (номер 60 за декабрь 2012 год), в котором были изложены некоторые параметры как самих ионных двигателей, так и снабжаемых ими перспективных космических аппаратов.

Описанный там ионный двигатель ВЧИД-45 (который и был, скорее всего, испытан на полигоне КБХА) обладает следующими параметрами: номинальная мощностью 35 кВт, тяга 760 мН (0,076 кг) и удельным импульсом до 7000 секунд (скорость истечения ионов — 70 км/c).
По сравнению с уже испытанными в космосе ионными двигателями, ВЧИД где-то на порядок мощнее — самый мощный ионный двигатель, работавший в космосе, имел тягу в 91 мН и был установлен на американском исследовательском зонде «Дип Спейс-1» (Deep Space-1).

Планируемый ресурс двигателя был заявлен, как 50 000 часов, что и есть главным прорывом проекта: до сих пор ионные двигатели страдали от быстрой деградации ускоряющих ионы решёток и электродов, которые просто «съедало» набегающим потоком высокоэнергетических ионов.

Питать ионные двигатели энергией должна бортовая ядерная энергетическая установка (ЯЭУ) мощностью 1 МВт, которая сможет обеспечить электроэнергией кластер из тридцати таких двигателей.

В перспективе «Роскосмосом» рассмотривались три варианта буксиров, снабжаемых ионными двигателями: «лунный грузовик» с ядерной энергетической установкой мощностью в 1МВт и марсианские буксиры для пилотируемых миссий с ЯЭУ мощностью в 2 и в 4 МВт.


В 2003-2005 годах НАСА разрабатывала корабль ЯЭУ и с ионными двигателями в рамках проекта «Прометей». Мощность бортовой ЯЭУ «Прометея» должна была составить 250 кВт. Нетрудно посчитать, что «лунный грузовик» от «Роскосмоса» должен быть, как минимум, вчетверо мощнее.

«Лунный грузовик» с ЯЭУ мощностью 1 МВт на платформе с четырьмя кластерами по десять двигателей ВЧИД-45 в каждом (общая массадвигательной установки при этом составляет 5.7 тонны) сможет обеспечить посадку на Луну модуля массой в 25 тонн.
За время активного существования «лунный грузовик» сможет осуществить минимум пять транспортных операций с перелетом с низкой геоцентрической орбиты (высотой в 800 км) на низкую селеноцентрическую орбиту (высотой в 100 км) с общей грузоподъемностью на низкой селеноцентрической орбите в 128,5 тонны (масса «грузовика», топлива и полезной нагрузки) и с расходом рабочего тела порядка 10,8 тонн на каждый перелет туда и обратно.

Для сравнения — при использовании классической ракеты на химическом топливе (пара водоро-кислород, ракета «Сатурн-V», программа «Аполлон») с низкой околоземной орбиты стартовала конструкция весом в 145 тонн, на орбиту полёта к Луне выводилось 46 тонн, лунный посадочный модуль весил 15 тонн, а возвращаемая капсула «Аполлона» весила всего 5 тонн).

Для марсианских версий буксиров пока что есть только общая оценка: их стартовая масса должна составить около 215 тонн, а время полета туда и обратно составит два с половиной года.

В публикации указано, что двигатель ВЧИД может быть смаштабирован и на другие номиналы, если есть потребность в увеличении тяги, если количество двигателей в кластере двигательной установки должно быть уменьшено. Например, двигатель может быть разработан на тех же принципах, если потребуются уровни мощности на уровне 79 кВт или 105 кВт. В этом случае тяга двигателя будет составлять 1.52 Н и 2.27 Н, соответственно. Удельный импульс может быть повышен с 6880 с до 7120 с или 7320 с, а общий КПД системы — с 78.6 % до 81.3 % или даже 83.5 %. Однако, стоимости разработки и квалификации опытных образцов при этом возрастут примерно пропорционально третьей степени диаметра двигателя.

В общем, всё только начинается...

Гордые парусники ещё бороздят просторы наших «ревущих сороковых», но где-то, в тиши кабинетов и лабораторий уже рисуют чертежи стальных китобоев с паровым двигателем, которые позволят будущему Ахаву догнать своего Моби Дика...

Удельный импульс или удельная тяга - показатель эффективности ракетного двигателя. Иногда оба термина используются как синонимы, имея в виду, что это, фактически, одна и та же характеристика. Удельная тяга применяется обычно во внутренней баллистике, в то время как удельный импульс - во внешней баллистике. Размерность удельного импульса есть размерность скорости, в системе единиц СИ это метр в секунду.

Определения

характеристика реактивного двигателя, равная отношению создаваемого им импульса к расходу топлива. Чем больше удельный импульс, тем меньше топлива надо потратить, чтобы получить определённое количество движения. Теоретически удельный импульс равен скорости истечения продуктов сгорания, фактически может от неё отличаться. Поэтому удельный импульс называют так же эффективной скоростью истечения.

Удельная тяга - характеристика реактивного двигателя, равная отношению создаваемой им тяги к массовому расходу топлива. Измеряется в метрах в секунду и означает, в данной размерности, сколько секунд данный двигатель сможет создавать тягу в 1 Н, истратив при этом 1 кг топлива. При другом толковании удельная тяга равна отношению тяги к весовому расходу топлива; в этом случае она измеряется в секундах. Для перевода весовой удельной тяги в массовую её надо умножить на ускорение свободного падения.

Формула приближенного расчета удельного импульса для реактивных двигателей на химическом топливе выглядит, как:

где T k - температура газа в камере сгорания; p k и p a - давление газа соответственно в камере сгорания и на выходе из сопла; y - молекулярный вес газа в камере сгорания; u - коэффициент, характеризующий теплофизические свойства газа в камере. Как видно из формулы в первом приближении, чем выше температура газа, чем меньше его молекулярная масса и чем выше соотношение давлений в камере РД к окружающему пространству, тем выше удельный импульс.

Имея в виду, что это, фактически, одна и та же характеристика. Удельная тяга применяется обычно во внутренней баллистике , в то время как удельный импульс - во внешней баллистике. Размерность удельного импульса есть размерность скорости, в системе единиц СИ это метр в секунду .

Определения

Уде́льный и́мпульс - характеристика реактивного двигателя , равная отношению создаваемого им импульса (количества движения) к расходу (обычно массовому, но может соотноситься и, например, с весом или объёмом) топлива. Чем больше удельный импульс, тем меньше топлива надо потратить, чтобы получить определённое количество движения. Теоретически удельный импульс равен скорости истечения продуктов сгорания, фактически может от неё отличаться. Поэтому удельный импульс называют так же эффективной (или эквивалентной) скоростью истечения .

Уде́льная тя́га - характеристика реактивного двигателя, равная отношению создаваемой им тяги к массовому расходу топлива. Измеряется в метрах в секунду (м/с = Н·с/кг = кгс·с/т.е.м.) и означает, в данной размерности, сколько секунд данный двигатель сможет создавать тягу в 1 Н, истратив при этом 1 кг топлива (или тягу в 1 кгс, истратив при этом 1 т.е.м. топлива). При другом толковании удельная тяга равна отношению тяги к весовому расходу топлива; в этом случае она измеряется в секундах (с = Н·с/Н = кгс·с/кгс). Для перевода весовой удельной тяги в массовую её надо умножить на ускорение свободного падения (примерно равное 9,81 м/с²).

Формула приближенного расчета удельного импульса (скорости истечения) для реактивных двигателей на химическом топливе выглядит, как:

где T k - температура газа в камере сгорания (разложения); p k и p a - давление газа соответственно в камере сгорания и на выходе из сопла; y - молекулярный вес газа в камере сгорания; u - коэффициент, характеризующий теплофизические свойства газа в камере (обычно u ≈ 15 ). Как видно из формулы в первом приближении, чем выше температура газа, чем меньше его молекулярная масса и чем выше соотношение давлений в камере РД к окружающему пространству, тем выше удельный импульс .

Сравнение эффективности разных типов двигателей

Удельный импульс является важным параметром двигателя, характеризующим его эффективность. Эта величина не связана напрямую с энергетической эффективностью топлива и тягой двигателя, например, ионные двигатели имеют очень небольшую тягу, но благодаря высокому удельному импульсу находят применение в качестве маневровых двигателей в космической технике.

Характерный удельный импульс для разных типов двигателей
Двигатель Удельный импульс
м/сек сек
Газотурбинный реактивный двигатель 30 000 3 000
Твердотопливный ракетный двигатель 2 000 200

В конце 2012 года профессор Академии наук Китая Ян Цзюань представила перевод своей статьи, описывающей прототип уникального электромагнитного ракетного двигателя. На бумаге он выглядит гораздо интереснее имеющихся сегодня ионных двигателей хотя бы потому, что не требует расхода рабочего тела, но в этом и главная причина сомнений. Совсем недавно о таком типе электрического ракетного двигателя можно было только мечтать.

В отличие от всех иных типов ракетных двигателей, здесь ускорение должно достигаться за счёт направленного микроволнового излучения. О том, что электромагнитные волны создают давление, было известно ещё со времён Максвелла, однако описание принципов работы EmDrive вызывает множество вопросов.

Образно говоря, такой двигатель похож на микроволновку, к которой добавили резонирующую полость в виде замкнутого усечённого конуса. По идее, излучаемые микроволны оказывают давление на внутреннюю полость, которое не компенсируется только в одном направлении. Так (по мнению госпожи Цзюань) у EmDrive возникает реактивная тяга.

К сожалению, такой принцип работы EmDrive вызывает множество сомнений и напоминает печальный опыт установки экспериментального «движителя без выброса реактивной массы» на спутник «Юбилейный» в 2008 году.

Радует то, что EmDrive хотя бы не относится к пресловутым инерциоидам – типу устройств, работоспособность которых без взаимодействия с внешней средой невозможна. Сомнения касаются и большинства заявленных характеристик. Помимо того что в сравнении с лучшими ионными двигателями EmDrive обещает обеспечить больший срок службы, декларируется примерно в десять раз меньшая масса при той же мощности и большей (720 мН) тяге. Подробнее об истории разработки EmDrive смотрите статью Евгения Золотова.

При исследованиях дальнего космоса энергию для EmDrive, скорее всего, будут вырабатывать привычные модули РИТЭГ. Во внутренней области Солнечной системы (условно – до главного пояса астероидов) можно ограничиться солнечными батареями. Срок автономной работы КА с электромагнитным двигателем и солнечными батареями будет практически ограничен только износом, так как у него на борту нет расходуемых компонентов.



=====Ионные и плазменные двигатели =====

В отличие от химических реактивных двигателей, ионные не производят внезапного и очень эффектного выброса раскаленных газов, которые, собственно, и толкают традиционные ракеты. Их тяга обычно измеряется не в тоннах, а в граммах. Если такой двигатель на Земле положить на стол, у него не хватит сил сдвинуться с места. Но все, что эти двигатели недобирают в тяге, они более чем компенсируют продолжительностью работы; в вакууме открытого космоса они способны работать годами.

Типичный ионный двигатель напоминает внутренность телевизионной трубки - кинескопа. Электрический ток разогревает нить, которая, в свою очередь, создает поток ионизированных атомов, например, ксенона, которые затем выбрасываются через сопло. Вместо струи раскаленного, взрывного газа ионный двигатель выбрасывает слабый, но постоянный поток ионов.

Недавно в рамках проекта HyperV были собраны через Kickstarter средства на доработку импульсного плазменного двигателя. В качестве рабочего тела сгодятся практически любые газы. Сам двигатель обещает быть гораздо дешевле в производстве и эксплуатации, чем имеющиеся аналоги.

Главное преимущество заключается в универсальности. За счёт регулирования соотношения тяги к удельному импульсу один двигатель можно использовать для разных задач.

Плазменный двигатель представляет собой более мощную версию ионного. В качестве примера такого двигателя можно назвать VASIMR (variable specific impulse magnetoplasma rocket - магнитоплазменная ракета с переменным удельным импульсом); для разгона в космосе в нем используется мощный поток плазмы. Этот двигатель разработан астронавтом и инженером Франклином Чанг-Диасом. Водород в нем разогревается до температуры в несколько миллионов градусов при помощи радиоволн и магнитных полей. Очень горячая плазма выбрасывается затем через сопло ракеты, развивая при этом значительную тягу. На Земле прототипы таких двигателей уже созданы и испытаны, но в космос ни один из них еще не летал. Некоторые разработки предлагают использовать для разогрева плазмы в двигателе солнечную энергию. Другие предполагают использовать энергию ядерного распада (при этом, естественно, возникают дополнительные проблемы безопасности - ведь придется отправлять в космос большое количество ядерных материалов, а космические аппараты подвержены всяческим случайностям).

Но ни у ионного, ни у плазменного двигателя не хватит сил, чтобы доставить нас к звездам. Для этого потребуются реактивные двигатели, основанные на совершенно иных принципах. Одна из серьезных проблем при разработке звездолета - это чудовищное количество топлива, необходимое для путешествия даже к ближайшей звезде, и большой промежуток времени, который потребуется на это путешествие.

Теоретически гигантский солнечный парус может развить скорость до половины скорости света. Кораблю с таким парусом на дорогу до ближайших звезд потребовалось бы всего около восьми лет. Движитель на этом принципе хорош еще и тем, что все его принципы уже известны. Для его создания не требуется открывать новых физических законов. Зато в полный рост встают другие проблемы - и экономические, и технические. Сооружение паруса поперечником в несколько сотен километров, а также строительство на Луне тысяч мощных лазеров представляют собой очень серьезную инженерную проблему - и необходимые для реализации проекта технологии появятся, возможно, еще не скоро. (Главная проблема межзвездного солнечного паруса - возвращение назад. Чтобы привести корабль обратно к Земле, придется строить на луне у звезды-цели вторую батарею лазеров. Или совершить около этой звезды стремительный гравитационный маневр, который поможет набрать скорость для обратного пути. Тогда лазеры на Луне можно будет использовать для торможения паруса, чтобы корабль мог спокойно сесть на Землю.)

=====Прямоточный термоядерный двигатель =====

Во Вселенной более чем достаточно водорода, так что корабль с таким двигателем мог бы собирать водород-т. е. топливо - по пути, в процессе движения в открытом космосе. По существу, у такого двигателя был бы неистощимый и всегда доступный источник топлива. Собранный водород затем нагревался бы до нескольких миллионов градусов - достаточно для термоядерного синтеза - и высвобождал энергию.

Принцип прямоточного ядерного двигателя предложил в 1960 г. физик Роберт Буссард; позже его популяризацией занимался и Карл Саган. Буссард рассчитал, что прямоточный термоядерный двигатель весом около 1000 т мог бы теоретически поддерживать постоянное ускорение, равное 1 g, т.е. сравнимое с действием земной силы тяжести. Представим, что такое ускорение поддерживается в течение года. За это время корабль разгонится до 77% скорости света; этого уже вполне достаточно, чтобы всерьез рассматривать перспективы межзвездных путешествий.

Результаты этих исследований оказались весьма спорными. Ракеты получались чрезвычайно сложными, и испытания часто заканчивались неудачей. В ядерном двигателе возникали очень сильные вибрации, оболочки тепловыделяющих сборок лопались, и ракета разваливалась. Другой постоянной проблемой была коррозия из-за горения водорода при высокой температуре. В конце концов в 1972 г. Ядерная ракетная программа была закрыта.

=====Импульсный ядерный двигатель =====

Еще одна теоретическая возможность - использовать в качестве движителя серию ядерных мини-бомб. К примеру, проект «Орион» предусматривал последовательное выбрасывание небольших термоядерных бомб позади корабля, чтобы он мог «оседлать» ударную волну от их взрывов. Теоретически такая система может разогнать космический корабль до скорости, близкой к скорости света.

В конце 1950-х и в 1960-х гг. были проведены тщательные расчеты для межзвездного корабля, основанного на этом принципе. Согласно полученным оценкам, он мог бы за год слетать до Плутона и обратно, достигнув при этом скорости в 10% скорости света. Но даже на такой скорости до ближайшей звезды пришлось бы лететь 44 года. Ученые рассматривали варианты, когда космический ковчег с таким движителем летел бы в космосе несколько столетий; в экипаже сменялись бы поколения, и многим пришлось бы прожить всю жизнь в этом движущемся мирке, чтобы их потомки могли добраться до близлежащих звезд.

В 1959 г. компания General Atomics выпустила доклад, в котором провела оценку размеров корабля типа «Орион». Самый крупный вариант, названный в докладе «супер-Орионом», должен был весить 8 млн т, иметь диаметр 400 м и двигаться на ударной волне от более чем тысячи водородных бомб.

Главная проблема, связанная с этим проектом, - возможность заражения района старта ядерными осадками. По оценке Дайсона, ядерные осадки от каждого запуска могут вызвать смертельную форму рака у десяти человек. Кроме того, электромагнитный импульс от взрыва так велик, что непременно вызвал бы массу коротких замыканий в расположенных неподалеку электрических системах.

Ракетный корабль по проекту «Дедал» оказался таким громадным, что строить его пришлось бы в открытом космосе. Она должна была весить 54 000 т (почти весь вес - ракетное топливо) и могла разогнаться до 7,1% скорости света, неся на себе полезную нагрузку весом 450 т. В отличие от проекта «Орион», рассчитанного на использование крохотных атомных бомб, проект «Дедал» предусматривал использование миниатюрных водородных бомб со смесью дейтерия и гелия-3 и системой зажигания при помощи электронных лучей. Но огромные технические проблемы и опасения, связанные с ядерным движителем, привели к тому, что проект «Дедал» также был отложен на неопределенное время.

Проект Longshot выглядел более реалистично и основывался на использовании лазерно-термоядерного двигателя. В качестве цели была выбрана звезда альфа Центавра B. Время полёта увеличилось до века, а миссия не предполагала возвращения. В отличие от проекта Daedalus, Longshot опирался преимущественно на существующие, а не на перспективные технологии. На последнем этапе стало очевидно, что кораблю потребуется порядка 264 тонн смеси гелия-3 и дейтерия, которых получить в таких количествах ценой разумных затрат не удастся.

Космический лифт

Проблема в том, что трос для космического лифта должен был бы выдерживать натяжение примерно в 60-100 ГПа. Сталь рвется при натяжении примерно в 2 ГПа, что лишает идею всякого смысла. По мнению ученых, волокно из углеродных нанотрубок должно выдерживать давление 120 ГПа, что заметно выше необходимого минимума. После этого открытия попытки создания космического лифта возобновились с новой силой.

=====Из пушки в небеса =====

Еще один хитроумный способ вывести корабль в космос и разогнать до фантастических скоростей - выстрелить им из рельсовой электромагнитной «пушки», которую описывали в своих произведениях Артур Кларк и другие авторы-фантасты. В настоящее время этот проект всерьез рассматривается как возможная часть противоракетного щита программы «звездных войн».

Способ заключается в том, чтобы вместо ракетного топлива или пороха использовать для разгона ракеты до высоких скоростей энергию электромагнетизма.

В простейшем случае рельсовая пушка представляет собой два параллельных провода или рельса; реактивный снаряд, или ракета, «сидит» на обоих рельсах, образуя U-образную конфигурацию. Еще Майкл Фарадей знал, что на рамку с электрическим током в магнитном поле действует сила. (Вообще говоря, на этом принципе работают все электродвигатели.) Если пропустить через рельсы и снаряд электрический ток силой в миллионы ампер, вокруг всей системы возникнет чрезвычайно мощное магнитное поле, которое, в свою очередь, погонит снаряд по рельсам, разгонит его до громадной скорости и вышвырнет в пространство с оконечности рельсовой системы.

Во время испытаний рельсовые электромагнитные пушки успешно выстреливали металлические объекты с громадными скоростями, разгоняя их на очень короткой дистанции. Что замечательно, в теории обычная рельсовая пушка способна выстреливать металлический снаряд со скоростью 8 км/с; этого достаточно, чтобы вывести его на околоземную орбиту. В принципе весь ракетный флот NASA можно было бы заменить рельсовыми пушками, которые прямо с поверхности Земли выстреливали бы полезный груз на орбиту.

Рельсовая пушка имеет существенные преимущества по отношению к химическим пушкам и ракетам. Когда вы стреляете из ружья, максимальная скорость, с которой расширяющиеся газы способны вытолкнуть пулю из ствола, ограничена скоростью распространения ударной волны. Жюль Берн в классическом романе «С Земли на Луну» выстрелил снаряд с астронавтами к Луне при помощи пороха, но на самом деле несложно подсчитать, что максимальная скорость, которую может придать снаряду пороховой заряд, во много раз меньше скорости, необходимой для полета к Луне. Рельсовая же пушка не использует взрывное расширение газов и потому никак не зависит от скорости распространения ударной волны.

Но у рельсовой пушки свои проблемы. Объекты на ней ускоряются так быстро, что они, как правило, сплющиваются из-за столкновения... с воздухом. Полезный груз оказывается сильно деформированным в процессе «выстрела» из дула рельсовой пушки, потому что когда снаряд врезается в воздух, это все равно как если бы он ударился о кирпичную стенку. Кроме того, при разгоне снаряд испытывает громадное ускорение, которое само по себе способно сильно деформировать груз. Рельсы необходимо регулярно заменять, так как снаряд при движении также деформирует их. Более того, перегрузки в рельсовой пушке смертельны для людей; человеческие кости просто не выдержат подобного ускорения и разрушатся.

Одно из решений состоит в том, чтобы установить рельсовую пушку на Луне. Там, за пределами земной атмосферы, снаряд сможет беспрепятственно разгоняться в вакууме открытого космоса. Но даже на Луне снаряд при разгоне будет испытывать громадные перегрузки, способные повредить и деформировать полезный груз. В определенном смысле рельсовая пушка - антипод лазерного паруса, который набирает скорость постепенно в течение долгого времени. Ограничения рельсовой пушки определяются именно тем, что она на небольшом расстоянии и за небольшое время передает телу громадную энергию.

Рельсовая пушка, способная выстрелить аппарат к ближайшим звездам, стала бы весьма дорогостоящим сооружением. Так, один из проектов предусматривает строительство в открытом космосе рельсовой пушки длиной в две трети расстояния от Земли до Солнца. Эта пушка должна будет накапливать солнечную энергию, а затем разом расходовать ее, разгоняя десятитонную полезную нагрузку до скорости, равной трети скорости света. При этом «снаряд» будет испытывать перегрузку в 5000 g. Разумеется, «пережить» такой пуск смогут только самые выносливые корабли-роботы.

=====Удельный импульс и эффективность двигателя =====

Если нужно сравнить эффективность различных типов двигателей, инженеры обычно говорят об удельном импульсе. Удельный импульс определяется как изменение импульса на единицу массы израсходованного топлива. Таким образом, чем эффективнее двигатель, тем меньше топлива требуется для вывода ракеты в космос. Импульс, в свою очередь, есть результат действия силы в течение определенного времени. Химические ракеты, хотя и обладают очень большой тягой, работают всего несколько минут, а потому характеризуются очень низким удельным импульсом. Ионные двигатели, способные работать годами, могут иметь высокий удельный импульс при очень низкой тяге.

Максимально возможным удельным импульсом обладала бы ракета, способная достигать скорости света. Ее удельный импульс составил бы около 30 млн. Ниже приводится таблица удельных импульсов, характерных для различных типов реактивных двигателей.

Тип двигателя(Удельный импульс)

Твердотопливный(250)

Жидкостный(450)

Ионный(3000)

Плазменный VASIMR (1000-30 000)

Атомный(800-1000)

Термоядерный прямоточный(2500-200 000)

Ядерный импульсный(10 000-1 000 000)

На антиматерии(1 000 000-10 000 000)

Удельный импульс тяги

ракетного двигателя, удельный импульс ракетного двигателя, - отношение тяги ракетного двигателя к секундному массовому расходу рабочего тела (производная от импульса тяги по расходуемой массе в данном интервале времени). Выражается в Н(·)с/кг = м/с. На расчётном режиме работы двигателя совпадает со скоростью реактивной струи. Энергетический показатель эффективности двигателя.

  • - см. Тяговое усилие...

    Сельскохозяйственный словарь-справочник

  • - 1) побуждение, толчок, стремление; побудительная причина; 2) мера механического движения; то же, что количество движения; 3) импульс силы - мера действия силы за некоторый промежуток времени...

    Начала современного Естествознания

  • - устройство, вызывающее прекращение работы основной горелки или основной и запальной горелок, когда продукты сгорания выходят через стабилизатор тяги в помещение...

    Строительный словарь

  • - отклонение реактивной струи ТРД или струи, образуемой при вращении винта ТВД от направления, соответствующего крейсерскому режиму полёта, для создания дополнительной подъёмной, управляющей...

    Энциклопедия техники

  • - ракетного двигателя - см. в ст. Удельная тяга....

    Большой энциклопедический политехнический словарь

  • - линия, перпендикулярная плоскости вращения пропеллера. Она совпадает с осью пропеллера...

    Морской словарь

  • - проволока и трос, служащие для управления на расстоянии стрелками, семафорами, предупредительными дисками и приводными замками; тяги эти обхватывают шкив 1 переводного рычага и шкив 6 сигнального привода...
  • - отличается от силы тяги на крюке тем, что последняя относится к равномерному движению поезда, между тем как первая м. б. замерена при наличии как ускорения, так и замедления...

    Технический железнодорожный словарь

  • - воображаемая внешняя сила Fi килограммов, прилагаемая от рельсов к движущим колесам паровоза и определяемая из того условия, что ее работа за один оборот движущих колес равна работе пара в цилиндрах паровозной...

    Технический железнодорожный словарь

  • - действительная сила тяги, приложенная к ободу движущих колес локомотива и для паровоза определяемая из того условия, что ее работа за один оборот движущих колес равна полной работе пара, произведенной в цилиндрах...

    Технический железнодорожный словарь

  • - разъемная головка в виде двух половин, надеваемая на эксцентрик. Одна из половин приболчивается или составляет одно целое с эксцентриковой тягой...

    Технический железнодорожный словарь

  • - 1...

    Телекоммуникационный словарь

  • - прибор, автоматически устанавливающий силу тяги в топке и дымоходах парового котла в зависимости от изменений нагрузки котла...

    Морской словарь

  • - ракетного двигателя, показатель эффективности ракетного двигателя; идентичен удельной тяге...

    Большая Советская энциклопедия

  • - См. МУЖ -...

    В.И. Даль. Пословицы русского народа

  • - Жарг. шк. Шутл. Физика (учебный предмет. ВМН 2003, 120...

    Большой словарь русских поговорок

"Удельный импульс тяги" в книгах

От тяги к хмельному

Из книги Заговоры сибирской целительницы. Выпуск 37 автора Степанова Наталья Ивановна

От тяги к хмельному Берут завязки, которыми перевязывали ноги покойнику, и опускают их в воду. Воду заговаривают в полночь и дают пьющему человеку. Для лечения женщины ритуал проводят в женские дни (среда, пятница, суббота); для лечения пьющего мужчины – в мужские дни

От тяги к спиртному

Из книги Заговоры сибирской целительницы. Выпуск 31 автора Степанова Наталья Ивановна

От тяги к спиртному Из письма:«Я вылечила своего сына по Вашей книге от пьянства, и он уже три года не пьет. Как-то при разговоре с ним он мне сказал, что когда он в компании или у кого-нибудь за столом на дне рождения или свадьбе, то ему на дух спиртное не нужно, но когда он

От тяги к наркотику

автора Степанова Наталья Ивановна

От тяги к наркотику В старину тоже были любители попить запаренную коноплю и мак. Сушили некоторые виды грибов, смешивали с беленой и постепенно становились зависимыми от наркотиков.Лечили таких наркоманов баней, постом, молитвой и травами.Бабушка знала множество

От тяги к хмелю

Из книги 7000 заговоров сибирской целительницы автора Степанова Наталья Ивановна

От тяги к хмелю Это очень сильный заговор. Читают его в последний день убыльного месяца. Нужно выйти на улицу и, глядя на звезды, говорить:Небо Божие, Божий Престол, а у раба Божия (имя) всегда накрыт стол. Спуститесь, звезды, в его бражную чашу, чтобы ему по хмельному не

Заговор от тяги к вину

Из книги Заговоры сибирской целительницы. Выпуск 34 автора Степанова Наталья Ивановна

Удельный вес

Из книги Универсальный энциклопедический справочник автора Исаева Е. Л.

Удельный вес Килограмм-сила на кубический метр (9,80665 Н/м3)Тонна-сила на кубический метр (9,80665

Удельный вес

БСЭ

Удельный импульс

Из книги Большая Советская Энциклопедия (УД) автора БСЭ

Удельный вес

Из книги Анализы. Полный справочник автора Ингерлейб Михаил Борисович

Удельный вес Удельный вес желчи в порциях А и С составляет обычно 1008–1012, в порции В –

От тяги к наркотикам

Из книги Большая защитная книга здоровья автора Степанова Наталья Ивановна

От тяги к наркотикам В старину тоже были любители попить запаренную коноплю и мак. Сушили некоторые виды грибов, смешивали с беленой и постепенно становились зависимыми от наркотиков.Лечили таких наркоманов баней, постом, молитвой и травами.Бабушка знала множество

Заговор от тяги к вину

Из книги 1777 новых заговоров сибирской целительницы автора Степанова Наталья Ивановна

Заговор от тяги к вину Шел Иисус Христос, нес три свечи, И как этим свечам в аду не гореть, Так и Божьему рабу (имя) О хмельном не скорбеть. Матерь Божья, запрети (такому-то) рабу Чашу с хмелем ко рту Подносить, в руки брать, Помоги ему о хмельном Не думать, не тосковать. Одна

4.2. Проблема тяги

Из книги автора

4.2. Проблема тяги Существует множество проектов колонизации и терраформирования Марса, которые очень любят обсуждать популяризаторы и научные журналисты. Довольно часто на телевизионных экранах можно увидеть фильмы, в которых высадка экспедиции на Марс представляется

Резиновые тяги

Из книги Учебник подводной охоты на задержке дыхания автора Барди Марко

Резиновые тяги Резиновые тяги определяют мощность арбалетного ружья, и, естественно, чтобы мощность была хорошей, нужны хорошие резинки. Но как же определить, являются ли они таковыми?Материал, используемый для производства резиновых трубок - это результат химического

Глава 19 ПРОБЛЕМА ТЯГИ

Из книги Битва за звезды-2. Космическое противостояние (часть II) автора Первушин Антон Иванович

Глава 19 ПРОБЛЕМА ТЯГИ Дальние межпланетные экспедиции и проблема тяги Общеизвестно, что на сегодняшний день основой космической экспансии человечества по-прежнему являются ракеты на жидком топливе. Однако имеющиеся в наличии и перспективные ракеты на жидком топливе, к

Конструкция тяги

Из книги Создаем робота-андроида своими руками автора Ловин Джон

Конструкция тяги Тяга между передними и задними ногами изготовлена из прутка с резьбой 3 мм (см. рис. 11.10). В исходной конструкции длина тяги составляет 132 мм от центра до центра. Тяга вставляется в отверстия на передней и задней ноге робота и может быть закреплена с помощью