Военные корабли будущего. Окно в будущее

В будущем скорость везде и во всем будет на первом месте, и мы это уже ощущаем. Для кораблей и судов будущего вода станет ее врагом, поэтому большие временные показатели, затраченные на передвижение по мировому океану пугают путешественников и они выбирают быстрые суда, на которых можно добраться куда пожелает душа.

корабль будущего «Earthrace»


Первое судно будущего уже создано и совершило несколько морских походов. Это нечто среднее между кораблем и самолетом и переводится как морская стрела. Это удивительное и достаточно быстрое судно способное преодолеть большие волны, но пока на небольшие расстояния. Благодаря своему внешнему облику и конструктивным особенностям судно «Earthrace» может развивать прекрасную скорость. Его корпус способен погружаться в волны, но самая поразительная характеристика этого судна это прочность. Корпус корабля выполнен из карбона. Еще одной особенностью судна «Earthrace» является его экономичная силовая установка, работающая на биотопливе. Для пересечения земного шара этому судну потребуется всего один контейнер с таким топливом, которое выполнено из масла соевых культур и снижает выброс вредного углекислого газа в окружающую среду до 75 процентов. В будущем такие морские суда станут обычным явлением, и кроме того, уже проводятся эксперименты над разработанным агрегатом, который получает биотопливо из морских водорослей.

корабль будущего «Proteus»

Долгие годы корабли и суда, путешествующие по мировому океану, сталкиваются с проблемой - сопротивление волн. Ученые переосмыслили дизайн корпуса судна и его возможности. В результате получился корабль с нетипичной формой, который выделяется среди других морских судов, потому что у него нет корпуса.

Корабль будущего «Proteus», что значит «Прометей» может покорять волны. Он легко адаптируется к волнению морской среды, повторяя движение, поэтому у него нет необходимости преодолевать их сопротивление.

Эта концепция получила название Wave Adaptive Modular vessel (WAM-V) (модульное судно адаптивное к волне). Создателем первого в своем роде футуристичного судна стал итальянский океанограф Ugo Conti, который работает в Институте морских исследований в Северной Каролине. Стоимость его экспериментального проекта составила 1,5 миллиона долларов США.

«Proteus» это абсолютно новый тип судов, рабочая часть которого слегка касается поверхности воды, пронизывая волны, возникающие на пути, и благодаря своей гибкости адаптируется к структуре, т. е. волной.

корабль будущего «Proteus» фото

Корабль будущего «Proteus» изготовлен из нескольких типов легких и прочных материалов: титан, алюминий и армированные ткани.

Висящий над водой модуль может быть заменен в зависимости от функций или назначения судна. «Proteus» может трансформироваться из средства для перевозки людей в средство для перевозки грузов. Один из плюсов перевоплощения это скорость. Трансформация не занимает много времени и усилий.

В управлении такие корабли будущего как «Proteus» будут под силу даже любителям компьютерных игр. Два джойстика-контроллера делают управление легким и приятным. Судно также легко достигает берега и швартуется без каких-либо трудностей.

Сейчас «Proteus» используется для наблюдения за китами и подводной разведки. Такая концепция разрушает стереотипы существующих водных средств, движущихся по волнам, и может со временем заинтересовать владельцев круизных лайнеров или других типов судов.

Технические данные корабля будущего «Proteus»:

Длина - 30 м;
Водоизмещение - 12 тонн;
Силовая установка - два дизельных двигателя мощностью 355 л. с.;
Дальность плавания - до 5000 миль;
Максимальная скорость - 70 узлов;

быстроходные грузовые и пассажирские корабли будущего

Мы живем в эпоху развития водного транспорта - это приятно осознавать. Но одно дело управлять небольшим судном, а другое - океанским кораблем с грузом. Кроме того, время, затраченное на обработку груза, расходуется нерационально.

Компания «Hydro Lance Corporation» разработала проекты новых судов различных типов, которые в будущем будут включать в себе важные аспекты - скорость передвижения и погрузки, трансформация и удобства на борту.

высокоскоростное контейнерно-транспортное судно

Грузопассажирское скоростное судно контейнеровоз

многоцелевой танкер

скоростное судно типа газовоз (LNG)

Эти корабли смогут без особых проблем пересекать Атлантику за 3 дня. Их дизайн позволит им развить скорость при любых погодных условиях, так как не испытывает ударов волн благодаря конструкции корпуса.

Но в мире грузовых перевозок давно актуален вопрос - как быстро произвести загрузку или разгрузку судна. Типичный подход устаревает. За 1 час обрабатывается около 30 контейнеров. Самодвижущие ленты и другие современные приспособления помогут загрузить многотонные контейнеры, заполненные товарами за считанные минуты. Обширная площадь трасс больше не будет отнимать много времени на разгрузку и погрузку автомобильного транспорта. Также в портах или контейнерных терминалах больше не понадобятся грузоподъемные краны. Эти уникальные корабли будущего будут равномерно размещать грузы прямо на палубе и довольно быстро заполняться грузом.

Для приема на борт пассажиров вовсе не нужны будут морские порты, ведь конструкция грузопассажирских кораблей будущего позволит им беспрепятственно подходить к берегам.

судно будущего для перевозки автомобилей «E/S Orcelle»

В мире потребляются миллионы литров топлива в сутки. С нестабильными ценами на нефтепродукты и ограниченные запасы этих ископаемых заставляют инженеров постоянно искать альтернативные источники энергии. Огромные грузовые корабли ежегодно выбрасывают в атмосферу миллионы кубометров углекислого газа, нанося огромный вред атмосфере и приближая таяние ледников на полюсах. Некоторые ученые считают, что развитие кораблестроения идет неправильным путем.

Инженерам шведской судоходной компании «Wallenius Wilhelmsen» была предоставлена полная свобода действий, результатом чего явилось грузовое судно, которое использует энергию окружающей среды. «E/S Orcelle» - это новое понятие в области грузовых кораблей будущего.

Футуристическое грузовое судно первое в своем роде будет использовать сразу три альтернативных источника энергии - солнце, ветер и волны.

На его восьми палубах равных по площади 14 футбольным полям (85000 кв. м) будут размещаться до 10000 автомобилей. Три грузовые палубы будут регулируемые по высоте и позволят перевозить большие грузы.

Создателей корабля будущего «E/S Orcelle» дальнего следования вдохновил покоритель дальних просторов - альбатрос. Считается, что на 90 процентов источником его энергии является природа. Подобно этой птице проект удивительного судна «E/S Orcelle» будет использовать энергию окружающей среды, чтобы уменьшить потребление собственной.

Нетипичный дизайн корпуса судна и отсутствие традиционных гребных винтов и руля позволит устранить одну из основных угроз мирового океана - балластные воды.

Корпус судна будет выполнен из алюминия и термопластичных композиционных материалов, которые придадут ему прочность, минимум технического обслуживания, и простоту в обработке и утилизации.

Первым альтернативным источником на корабле будущего будет солнечная энергия. Три огромных паруса, состоящие из фотоэлектрических панелей, в безветренную погоду будут осуществлять сбор солнечной энергии, которая затем будет преобразована в электрическую для моментального использования или сохранения.

Вторым альтернативным источником корабля будущего «E/S Orcelle» будет энергия волн. Грузовое судно будет оснащено двенадцатью устройствами - «плавниками», которые смогут преобразовывать кинетическую энергию водоворотов в механическую, а затем в электричество.

И напоследок топливные элементы. Эта технология не сегодняшний день получает все большее распространения и развивается быстрыми темпами. Около половины потребляемой электроэнергии судна будущего «E/S Orcelle» будет вырабатываться топливными элементами. Они будут сочетать в себе самые распространенные химические элементы на нашей планете - водород и кислород для производства электрической энергии для электродвигателей пропульсивной установки судна, а также вырабатывать электричество для других потребителей на борту.

Руководители «Wallenius Wilhelmsen» считают, что судоходные компании должны прилагать больше усилий в развитии новых технических решений для морских перевозок. Материальные затраты на строительство корабля будущего будут не из дешевых и будут намного больше чем строительство стандартного грузового судна стоимостью 46 миллионов долларов, но в перспективе с развитием применяемых технологий расходы будут становиться меньше и естественно экономически выгодными. В компании «Wallenius Wilhelmsen» судно для перевозки автомобилей «E/S Orcelle» планируют построить к 2025 году.

Технические данные грузового судна будущего «E/S Orcelle»:

Длина - 250 м;
Ширина - 50 м;
Высота - 40 м;
Осадка - 9 м;
Водоизмещение - 21000 тонн;
Скорость - 27 узлов;

Хотелось бы верить, что тенденции и уже полученные решения в ближайшем будущем будут применены на существующих судах. Найдя связь с океаном, человечество изменит мир. Мы покорим волны, получив энергию от самой природы, и будем спускаться в глубины, чтобы осваивать новые территории.

Корабли будущего изменят нашу жизнь

Перспектива того, что на боевых кораблях будущего будет установлено вооружение, построенное на новых физических принципах, способствует тому, что интерес военных моряков к теме электродвижения растет. Сама идея, которая предполагает объединение силовой установки корабля и его вооружения в единый контур на основе электрической энергии представляется очень заманчивой. А значит, данная тема все более плотно исследуется инженерами и конструкторами, в том числе и на российских предприятиях судостроительной отрасли.

Системами вооружений, построенными на новых физических принципах, можно назвать, в частности, перспективные комплексы, которые используют электромагнитный импульс для временного или даже перманентного вывода из строя РЛС, радиотехнических и цифровых систем, вычислительных машин вражеских кораблей. Помимо этого возможным представляется использование электроэнергии корабля для запуска и разгона снаряда (рельсотрон). Не стоит лишь забывать о том, что все подобные системы требуют очень больших запасов электрической энергии на борту корабля, а также возможности ее восстановления или поддержания на требуемом уровне без захода судна на базу.


В наши дни электромоторы применяются на боевых кораблях и в составе главной энергетической установки, и в качестве вспомогательного движителя. Так как современные двигатели являются высокооборотными, приходится между ними и винтом размещать понижающий редуктор, потери мощности в нем могут доходить до 2%. А в случае электрической системы приходится использовать преобразователи частоты и генераторы с общим КПД менее 90%. Это ниже, чем у «чисто механической» системы (к примеру, газовая турбина и главный турбозубчатый агрегат). Поэтому в экономическом плане электродвижение представляется невыгодным.

В свое время изобретение гребного электродвигателя дало достаточно резкий скачок всему развитию подводного судостроения, тогда как применительно к надводным боевым судам оно решает лишь вспомогательные задачи. Несмотря на это энтузиасты более широкого применения на флоте «электромагнитной силы» никуда не исчезают. Стремясь подогреть к данной теме интерес, они вводят в обращение новые термины, к примеру, «расширенное применение электродвижения». Реализовать полное электродвижение возможно лишь тогда, когда винт (или другой движитель) на всех режимах движения корабля приводится в действие лишь электромотором. В том случае, если на борту судна имеются механические источники энергии (турбина, дизельный двигатель и т.д.), обладающие возможностью крутить вал винта (чаще всего на больших ходах), то можно говорить о «прямом приводе со вспомогательным электродвигателем», или «частичным электродвижением».

«Полное электродвижение», которое построено на преобразовании механической энергии в электрическую, а затем снова в механическую энергию, понижает общий КПД. Это необходимо учитывать и кораблестроителям, и военным морякам. Представляется, что ожидаемое появление электромагнитных пушек (на фрегатах, корветах и эсминцах) и катапульт (на авианосцах) сделает некоторые потери энергии, возникающие при ее преобразовании из одного вида в другой, оправданными и возможными.

Литий-ионные батареи для подлодок

В связи с общей тенденцией на рост энергопотребления разнообразными системами кораблей (включая РЛС, БИУС, ГАК и другими) конструкторам требуется все более внимательно подходить к вопросу выработки и сохранения электроэнергии. В этом плане передовые в научно-техническом отношении страны мира довольно активно ведут работы по созданию литий-ионных батарей повышенной емкости. Есть свои успехи в этой области и в России.


Стоит отметить, что сам литий-ионный аккумулятор (Li-ion) впервые был выпущен компанией Sony еще в 1991 году, однако длительное время эти аккумуляторы использовались лишь в гражданской сфере. Данный тип аккумулятора сегодня очень широко распространен во всей бытовой технике и электронике, находя также применение и в качестве накопителя энергии в различных энергетических системах, и в качестве источника энергии в электромобилях. Сегодня это наиболее популярный вид аккумулятора для таких устройств, как ноутбуки, мобильные телефоны, цифровые видеокамеры и фотоаппараты, а также электромобили. Литий-ионные аккумуляторы очень хорошо зарекомендовали себя в работе, но до недавнего времени им не находилось применения на флоте. Несмотря на то, что подобные аккумуляторы обладают рядом важных преимуществ перед классическими кислотными батареями, включая способность выдерживать повышенные токи разряда и зарядки, повышенную емкость, более долгий жизненный цикл, меньшие расходы в ходе эксплуатации и т.д.

Естественно, все это не могло остаться в стороне от конструкторов военно-морской техники. К примеру, в конце 2014 года российское ЦКБ «Рубин», специализирующееся на проектировании подводных лодок и ведущее в нашей стране бюро подводного кораблестроения, заявило об успешном проведении цикла испытаний новых литий-ионных батарей, предназначенных для неатомных подводных лодок. Об этом журналистам рассказывал тогда генеральный директор ЦКБ «Рубин» Игорь Вильнит. Подобные батареи значительно увеличивают автономность подлодок, обладая большим сроком службы, а также не требуют для обслуживания и работы сложного оборудования. В то же время в российском флоте применяются аккумуляторные батареи, срок действия которых ограничен, а цена, по оценкам экспертов, может достигать 300 миллионов рублей. По словам Андрея Дьячкова, ранее возглавлявшего ЦКБ «Рубин», современные литий-ионные аккумуляторные батареи позволят увеличить время нахождения подводных лодок под водой минимум в 1,4 раза, в то время как потенциал данной технической идеи используется в настоящее время лишь на 35-40%, сообщало РИА .

Направление является перспективным для флота, это давно заметили во всем мире. По информации ресурса shephardmedia.com, в марте 2020 года Военно-морские силы самообороны Японии собираются ввести в строй первую в мире неатомную подлодку (11-я в серии субмарин типа Soryu), которая получит литий-ионные аккумуляторные батареи. Это позволит японцам отказаться от использования на подлодках не только традиционных свинцово-кислотных аккумуляторных батарей, но и воздухонезависимых двигателей Стирлинга.

Японская неатомная подводная лодка SS 503 Hakuryū типа Soryu.


Согласно словам вице-адмирала в отставке Масао Кобаяси, использование литиево-ионных аккумуляторных батарей «должно драматически изменить действия неатомных подводных лодок». Такие батареи обеспечивают субмаринам продолжительность подводного хода, которая сопоставима с продолжительностью хода при использовании воздухонезависимых энергетических установок (ВНЭУ) на небольших скоростях, однако при этом за счет высокой емкости они могут обеспечить довольно высокую продолжительность подводного хода и на больших скоростях, что особенно важно для подлодок при выходе их в атаку или при уклонении от противника. При этом в отличие от ВНЭУ, подводная лодка в состоянии постоянно пополнять запас энергии в литиево-ионных батареях за счет подзарядки батарей с использованием устройства РДП (устройство для работы двигателя под водой).

Согласно словам вице-адмирала Кобаяси, литиево-ионные батареи также отличаются более коротким временем подзарядки в сравнении со свинцово-кислотными батареями, это достигается за счет большей силы заряда тока. Также такие аккумуляторы долговечнее, а электрические схемы с их использованием проще в построении электрических сетей и управлении. Оборотной стороной медали называют высокую стоимость литиево-ионных батарей. Так контрактная цена 11-й субмарины типа Soryu составляет 64,4 миллиарда иен (порядка 566 миллионов долларов), против 51,7 миллиарда иен (454 миллиона долларов) у десятой лодки этого же типа. Почти вся разница в цене субмарин придется на литий-ионные аккумуляторные батареи и соответствующие электросистемы.

Использование гребных электродвигателей

Для военных моряков очень большое значение имеет уменьшение демаскирующих признаков. Лучше всего этому способствует использование гребного электродвигателя (ГЭД), который считается наиболее малошумным из всех распространенных сегодня корабельных силовых установок. Правда, для надводного судна снижение акустического поля является не таким актуальным, как для подводного флота. Все дело в том, что главным демаскирующим фактором для надводных кораблей является заметность в радиолокационном (радиоволны хорошо отражаются от надстроек и борта), а также инфракрасном полях (силовая установка, построенная на основе двигателя внутреннего сгорания).

Поэтому для надводных кораблей наиболее актуальным уменьшение гидроакустического поля представляется для специализированных судов - противолодочных (сторожевых) кораблей. Чаще всего они ведут поиск вражеских субмарин в режиме малого и среднего хода - не более 15 узлов (около 28 км/ч) с помощью гидроакустических комплексов с буксируемыми, погружаемыми и подкильевыми антеннами. Дальность действия таких антенн напрямую зависит от вибрационного и шумового «портретов» корабля-носителя, чем ниже скорость движения судна, тем эффективнее работают антенны.

Модель ГЭД, рендер realred.ru


Именно меньшая шумность - основное достоинство установок с электродвижением. Никакую другую энергетическую установку невозможно сделать менее шумной, чем установку с электродвигателем. При этом существенный вклад в общий шумовой «фон» корабля вносит гребной вал, который жестко связан через редуктор с основными двигателями. Для снижения этого шума используются специальные муфты. Помимо этого вибрация двигателей передается и на обшивку корпуса судна (корабельные двигатели, редукторы, механизмы ставят на фундамент, который жестко связан с набором корпуса, а тот в свою очередь - с обшивкой корпуса). Именно обшивка корабля излучает колебания во внешнюю среду (в воду), а это и является источником шума, который называют структурным. Для снижения «структурного шума» широко практикуется установка всех механизмов на амортизаторы.

В энергетических установках с полным электродвижением гребной вал никак не связан с основным (для него) источником шума - главным двигателем, так как на всех режимах хода он вращается лишь электродвигателем. Помимо этого в «электрической» главной энергетической установке генератор вместе с первичным двигателем можно расположить даже в надстройке корабля (к примеру, так размещена часть дизель-генераторов на британских фрегатах проекта 23), максимальным образом удалив их от наружной обшивки судна.

Правда, на скорости движения более 15 узлов все преимущества электродвижения в плане бесшумности такого хода заканчиваются. Это происходит из-за того, что главной составляющей подводного шума (на некотором удалении от судна) становится шум от кавитации гребного винта. Поэтому на боевых кораблях имеет смысл бороться со снижением шума от ГЭУ лишь на скоростях до 15 узлов. Поэтому и применение электродвижения можно использовать лишь для обеспечения кораблю поискового хода, что и подходит противолодочным судам.

Сегодня известны примеры, когда отдельные конструкторы пытались снизить акустическую заметность боевых кораблей при помощи сокращения длины валов, утверждая, что такое решение достигается с помощью грамотного размещения элементов силовой установки внутри корпуса боевого корабля и надстройки. Некоторые из таких решений действительно были реализованы на практике, к примеру, на британских эсминцах тип 45 Daring, силовая установка которых состоит из 2-х газовых турбин Rolls-Royce, пары дизель-генераторов Wärtsilä, а также электродвигателей Converteam. Для КВМС с 2003 по 2011 год было построено 6 таких эсминцев.

Эсминец тип 45 Daring


В США активно ведется строительство перспективных эсминцев нового поколения, получивших обозначение Zumwalt. Работы стартовали еще в 2008 году, головной корабль серии вступил в строй в октябре 2016 года. Энергетическая установка корабля включает газовые турбины и асинхронные электродвигатели мощностью 36,5 МВт с рабочим напряжением 6600 В. На третий корабль серии DDG-1002 Lyndon B. Johnson планируется поставить высокотемпературный сверхпроводимый синхронный двигатель с постоянными магнитами, его мощность составит те же 36,5 МВт, а частота вращения вала - 2 оборота в секунду. В то же время начальная эксплуатация эсминца нового поколения продемонстрировала всему миру, что он еще ненадежен и страдает от детских болезней, его эксплуатация сопровождается многочисленными поломками. Так 22 ноября 2016 года ГЭУ эсминца Zumwalt вышла из строя в тот момент, когда он проходил Панамский канал. Обездвиженный корабль пришлось буксировать на базу с помощью самых обыкновенных буксиров, которые не обременены силовыми установками нового типа.

Еще одним положительным качеством электродвижения помимо снижения шумности, можно назвать повышение маневренности судов. Как у газовой турбины, так и у дизеля существует значение минимальной мощности, следовательно, есть и минимальное значение устойчивой скорости хода. В то время как при помощи электродвигателя можно достаточно легко менять частоту и направление вращения гребного вала, а значит скорость и направление движения судна. Благодаря этому главная энергетическая установка с электродвигателем уже достаточно давно применяется на тех кораблях, которые по своему назначению должны обладать максимально возможной маневренностью: буксиры, паромы, ледоколы, плавучие краны и т.п.

Азиподы

В перспективе еще одним несомненным плюсом электродвижения для боевых кораблей может стать отказ от использования гребных валов. Начиная с 1992 года в качестве гребных электродвигателей (ГЭД) начали довольно широко использоваться винто-рулевые комплексы (ВРК) с погруженным гребным двигателем (podded drive), в которых ГЭД был вынесен за пределы корпуса корабля и установлен в подводной капсуле (коконе), обладающей высокими гидродинамическими свойствами.

Azipod - azimuthing podded propulsion system


Типовые ВРК создают или с одним упорным, или с двумя соосными (тяговым и упорным) винтами. В нашей стране наибольшее распространение получили финские системы под обозначением «Азипод» (Azipod - azimuthing podded propulsion system) с одним упорным винтом и ГЭД мощностью от 1,5 до 4,5 МВт. Основными достоинствами ВРК называют: возможность разворота капсулы в горизонтальной плоскости сразу на 360 градусов, то есть реверс направления вращения винта на 100% мощности; валопровод и возможность функционирования винта фиксированного шага на небольших скоростях (до 0,1 от нормальной). Помимо этого ВРК позволяет значительно снизить уровень вибрации и шума силовой энергетической установки, а также установить электроэнергетическое оборудование в труднодоступных для размещения груза местах, это, в свою очередь, позволяет конструкторам более рационально использовать полезное пространство корабля.

Самым эффективным источником тока для ВРК называют сеть переменного тока, которая позволяет не только повысить экономичность и надежность главной энергетической установки, но и использовать для привода винта асинхронные двигатели, оснащенные короткозамкнутым ротором и не требующие обслуживания в процессе эксплуатации. Для того чтобы улучшить пусковые качества асинхронного привода, достаточно часто применяются глубокопазные и двухклеточные роторы специального исполнения. Частоту вращения винта в системах, называемых Azipod, можно регулировать при помощи тиристорных преобразователей частоты. Использование ВРК на практике существенно повышает маневренность кораблей и позволяет даже довольно крупным из них обходиться в порту без помощи со стороны буксиров. Помимо этого отсутствие гребных валов повышает полезный объем в корпусе судна.

Известно, что системы электродвижения были применены на российском транспорте вооружений «Академик Ковалев», который был построен на ЦС «Звездочка» в Северодвинске и принят в состав флота в декабре 2015 года. Особенностью корабля проекта 20180ТВ, созданного специалистами ЦМКБ «Алмаз», стала его движительная установка: дизель-генераторы корабля вырабатывают электричество, которое питает электродвигатели в составе ориентируемых винторулевых комплексов. Благодаря наличию на корабле ВРК, этот транспорт вооружений отличается повышенной маневренностью, он может удерживать заданный курс при существенном волнении на море и успешно решать задачи, поставленные перед ним командованием ВМФ. В настоящее время ЦС «Звездочка» осуществляет постройку второго корабля в рамках того же проекта.


Специалисты считают, что подводные и надводные корабли с электродвижением, наиболее распространенные уже сегодня, в дальнейшем будут лишь совершенствоваться, особенно с учетом все более широкого применения винто-рулевых комплексов. При этом в будущем электродвижение на кораблях военно-морского флота во всех странах мира будет приобретать все больший размах.

Источники информации:
https://tvzvezda.ru/news/opk/content/201706150803-999y.htm
http://bmpd.livejournal.com/2443028.html
http://www.arms-expo.ru/news/perspektivnye_razrabotki/tskb_rubin_litievye_batarei_dlya_podlodok_proshli_ispytaniya
Целуйко И. Г. Развитие электродвижения военных флотов в мире // Молодой ученый. - 2012. - №4. - С. 54-57.

Обтекаемый дизайн, беспилотные авиасистемы и вооружение следующего поколения сделают корабли будущего самыми внушительными из всех когда-либо существовавших.

UXV Combatant: корабль с беспилотными летательными аппаратами


Сложно говорить о том, какие типы войн принесет будущее, но одно ясно: роботы будут участвовать в большинстве сражений. Фактически, уже участвуют. В прошлом году беспилотные ЛА (летательные аппараты) налетали 258502 часа, по сравнению с 27201 в 2002. Расходы на беспилотные аэросистемы американскими военными, как ожидается, достигнут 3,76 миллиарда долларов к 2010 году. Война роботов, долгое время остававшаяся уделом фантастов, ныне стала реальностью.
Вот почему, в конце прошлого года британская оборонная компания BAE Systems обнародовала планы строительства быстроходного, специально сконструированного морского дома для таких боевых роботов. Этот корабль представляет концепцию UXV Combatant: частично - корабль, частично - носитель беспилотных ЛА.

С точки зрения кораблестроения, наилучшим качеством здесь является то, что беспилотные ЛА могут взлетать со столь малого пространства, где управляемый человеком ЛА просто не смог бы.

"Это насилие – запускать самолет с носителя – потрясение для человеческого организма будет очень велико", - сказал Чарльз Томпсон (Charles Thompson) из BAE Systems. Уберите человека из аппарата, и самолет можно запускать с меньшей площадки, что сэкономит полезную площадь и позволит UXV действовать и в качестве быстрого, сильного корабля, и в качестве авианосца одновременно. На UXV две 164-футовые палубы, соединяющиеся в виде буквы V, смогут выстреливать беспилотные ЛА в воздух с помощью электромагнитных катапульт и рамп. Локаторы, инфракрасные датчики и радиочастотные определители (RFID) организуют управление, взлет и посадку ЛА.

UXV может выглядеть радикально новым, но фактически он перенял дизайн уже построенного корабля: проекта эсминца фирмы BAE «45 Daring» - массивного боевого корабля, в архитектуре которого использована технология "стелс": он вступит в состав британского флота в 2009 году. Подобно эсминцу проекта 45, UXV будет длиной около 500 футов (150 метров) и оснащен дизель-энергетической силовой установкой и электротурбиной. Максимальная скорость проекта «45» превысит 27 узлов, UXV разовьет такую же скорость.

Но, в отличие от предшественника, UXV сможет эффективно обслуживаться минимальным экипажем. Боевые корабли имеют экипажи из сотен человек, UXV будет управлять команда всего из 60 моряков, что достаточно для организации трехсменной вахты и дополнительно – для обслуживания беспилотных ЛА.

На постройку кораблей уходят годы, и, чтобы соответствовать требованиям будущего 2020 года, когда ожидается появление первых кораблей проекта, UXV должен быть многоцелевым. Вот почему инженеры фирмы BAE, работая вместе с американской General Dynamics над различными проектами, развивают концепцию так называемых «модульных целевых отсеков», изменение набора которых позволит командиру быстро изменять основное назначение корабля. UXV сможет быть и противолодочным кораблем, и тральщиком, и платформой для снабжения наземных частей, и взлетной палубой для беспилотных ЛА.

Вне боевой деятельности различные беспилотные ЛА могут базироваться на других кораблях или на наземной базе. Когда UXV получает задание, ЛА доставляются на борт. Для противолодочной деятельности корабль может быть оснащен беспилотными подводными аппаратами, высокотехнологичными гидролокаторами, торпедами или даже вертолетом, подобным противолодочному Super Lynx. В варианте тральщика, он сможет нести беспилотные ЛА, способные уничтожать обнаруженные опасные объекты. Для обеспечения наземных войск в бою, он готов нести десантно-высадочные средства, вертолеты огневой поддержки и другие бронированные машины.

UXV также будет иметь достаточно средств для самообороны. На баке расположатся пусковые установки для ракет «корабль-воздух», «корабль-корабль» и управляемых ракет. Орудие для стрельбы 6-ти дюймовыми снарядами скорострельностью свыше 20 выстрелов в минуту станет могучим средством ведения противокорабельной борьбы и поражения береговых целей. И 155-ти миллиметровая пушка среднего калибра ответит на огонь врага, когда десант устремится на побережье.

Когда планы постройки UXV попали в Интернет, некоторые комментаторы поспешили назвать его кораблем роботов. Но это не так. Даже с сегодняшними беспилотными ЛА большинство механизмов UXV будут находиться под контролем человека. Посему маленькая команда и несколько пилотов самолетов будут подвержены опасности потерять жизни практически при любом военном сценарии.

США называют гегемоном Мирового океана – этот статус им обеспечивают авианосные ударные группы. Систему противодействия им разрабатывают все великие державы, но противодействие не равно альтернативе, тем более вызову. Однако таким вызовом может стать российский атомный подводный авианосец. И эта идея не так парадоксальна, как кажется на первый взгляд.

В Главном штабе ВМФ РФ по стенам развешаны портреты великих русских флотоводцев. Эти люди открыли для нашей страны такие территории, как Острова Кука, Маршалловы Острова, Французская Полинезия, Фиджи, Папуа – Новая Гвинея, Гавайи, Трук и многое другое. Теперь эти курорты принадлежат США, Франции или Британскому Содружеству, а ведь могли и даже хотели стать частью России.

Но Александр I отказался принять в подданные . Александр II . Александр III не захотел занимать . Российские императоры избегали связываться с подобными территориями по одной простой причине: у России не было и до сих пор нет действительно мощного военно-морского флота, который мог бы в случае необходимости блокировать любую страну мира в любом уголке земного шара, как это могут сделать американцы.

Опыт мировых войн показал, что Черноморский и Балтийский флот легко блокируются даже не крейсерами или линкорами, а обычными катерами. , что без мощного флота крайне трудно помогать заморским союзникам. Однако в России по-прежнему строят в основном фрегаты, корветы, боевые катера, десантно-штурмовые лодки, вспомогательные суда, то есть корабли для плаванья по мелководью. На выходе – .

Чтобы доминировать в мире, нужен простор. Необходимо иметь в боевом походе в каждом море-океане как минимум одну классическую авианосную ударную группу – или нечто, что могло бы ее заменить. Одним из наиболее амбициозных и прорывных проектов в этом смысле можно считать идею подводного атомного авианосца.

Грызуны для Дяди Сэма

Первыми о подводных авианосцах задумались еще в самурайской Японии. В 1932 году со стапелей была спущена субмарина I-2 проекта J-1M, внутри которой располагался герметичный ангар для самолета-разведчика Caspar U-1.

Несмотря на ряд неудач и трудностей, связанных с этим ноу-хау, японские моряки пришли к выводу, что подводный авианосец не такая уж абсурдная идея. К 1935 году была построена улучшенная подводная лодка I-6. Однако военным чрезвычайно не нравилось, что самолет все время приходится спускать на воду специальным краном.

Перед нападением на Перл-Харбор японские военно-морские силы получили сразу три усовершенствованных лодки с разведчиком на борту – I-9, I-10 и I-11. Именно субмарина I-9 в итоге запустила в небо самолет, чтобы заснять результаты атаки на американскую базу. А 9 сентября 1942 года еще более совершенная субмарина проекта B1 нанесла первый удар непосредственно по территории США: самолет Yokosuka E14Y сбросил несколько зажигательных бомб на лес в штате Орегон, однако американцев спасли удача и дождливая погода – пожар не разгорелся.

Британская субмарина HMS M2, 1933 год (фото: The Air and Sea Co)

Венцом японской мысли стала лодка I-400 длиной около 120 метров. Субмарина несла 20 торпед и четыре самолета, которые вооружались двумя 250-килограммовыми бомбами. Японцы хотели даже сбросить на территорию США специальные контейнеры с грызунами, зараженными холерой и сибирской язвой. Не сложилось. Зато подводные лодки серии I-400 стали самыми крупными субмаринами в мире.

Под конец войны морские самураи обладали десятками авианесущих подлодок разного класса и модификаций. Этот подводный флот мог доставить к берегам США свыше полусотни самолетов с биологическим или химическим оружием. И тогда история пошла бы совсем другим путем.

Американские военные были в шоке, когда поняли, какая беда обошла стороной их благополучный континент. И выводы сделали исчерпывающие.

В марте 1946-го в полном соответствии с достигнутыми прежде договоренностями Москва потребовала предоставить советским специалистам доступ к японским подводным авианосцам. После этого американцы попросту утопили все японские подлодки. Это еще один судьбоносный поворот истории, которого так и не случилось: если бы Советский Союз в те годы получил самурайские технологии, гегемонии США и Британии в Мировом океане рано или поздно пришел бы конец.

Германия, Англия и Франция также пытались создать подводные авианосцы, но дальше экспериментальных образцов с маленьким самолетом-разведчиком не продвинулись. После серии неудач европейцы плюнули на амбициозный проект и занялись надводным флотом.

Смертоносный русский «Фазан»

Сегодня в интернете активно муссируются слухи, что атомный подводный авианосец создает и Россия. При этом сообщения иллюстрируются картинкой огромной субмарины с аэродромом на спине, где готовятся к старту современные истребители.

На этот проект уже вылили ушаты критики – был обсмеян каждый кингстон атомной подводной лодки. Но вопрос в том, откуда вообще информация, что подводный авианосец будет выглядеть именно так? Понятно, что захребетный аэродром попросту не даст субмарине ни плыть под водой, ни всплыть на поверхность. Это всего-навсего фантазия художника.

Аэродром должен быть обтекаемым, под корпус самой лодки. Вместо придуманных дизайнером истребителей с разбегом моряки, скорее всего, будут использовать ударные беспилотники вертикального взлета типа тейлситтер, то есть летательный аппарат, способный взлетать и садиться в вертикальном положении. Достоверно известно, что такой аппарат для Министерства обороны России уже , а имя ему – «Фазан».

После отрыва от стартовой площадки эта машина набирает высоту, скорость и затем переходит в режим привычного горизонтального полета. При этом «Фазан» может нести на борту не только аппаратуру разведки, но и ударные комплексы. Его предполагаемая скорость – 350–400 километров в час, дальность полета – две тысячи километров.

Атомная субмарина может иметь на борту несколько десятков таких машин – стоймя влезет много. То же касается боеприпасов к вооружению «Фазана».

Выстреливая этими машинами из ракетных шахт или запуская стаю из надводного положения, атомный подводный авианосец быстро отходит к месту предполагаемого сбора. Тем временем рой беспилотников неожиданно атакует американскую группу кораблей, военно-морскую базу или устремляется для удара вглубь континента на 500 километров. После этого остатки отряда могут вернуться к месту сбора для ремонта, техобслуживания и пополнения боезапаса.

Российским военным не придется тратиться на дорогостоящее обучение и не менее затратное обслуживание пилотов морской авиации. Более того, стоимость «Фазана» намного меньше современного истребителя, и потеря беспилотника никем не будет восприниматься как трагедия.

Но главные преимущества атомного подводного авианосца в его скрытности и внезапности появления над противником боевых дронов. Любой американский авианосец с группой кораблей похож на кладбищенский оркестр, слышимый за версту. А отследить атомный подводный крейсер практически невозможно. Он может появиться практически в любой точке у побережья США и нанести удар.

От Восточного до Западного побережья Соединенных Штатов в среднем около 4500 километров. Два подводных авианосца смогут атаковать континент с разных сторон на всю его глубину. То есть фактически не останется места, где бы население Америки чувствовало себя в полной безопасности.

Если удастся реализовать такой проект, Россия станет самой могущественной морской державой.

А вот классические авианосцы .

Известно немало случаев, когда в учебном бою такие корабли безнаказанно поражались подводными лодками различных классов. Американцев успешно «топили» шведы, канадцы, французы, англичане и даже чехи с чилийцами.

По подсчетам специалистов, в современной войне любой авианосец проживет не более двух часов, и летчики, взлетая со своего плавучего аэродрома, могут заранее искать запасное место посадки.

И недалек тот день, когда авианосцы США будут напоминать не о грозном и смертоносном оружии, а о неуловимом Джо из анекдота – кому он нужен-то?

Перспектива того, что на боевых кораблях будущего будет установлено вооружение, построенное на новых физических принципах, способствует тому, что интерес военных моряков к теме электродвижения растет. Сама идея, которая предполагает объединение силовой установки корабля и его вооружения в единый контур на основе электрической энергии представляется очень заманчивой . А значит, данная тема все более плотно исследуется инженерами и конструкторами, в том числе и на российских предприятиях судостроительной отрасли.

Системами вооружений, построенными на новых физических принципах, можно назвать, в частности, перспективные комплексы, которые используют электромагнитный импульс для временного или даже перманентного вывода из строя РЛС, радиотехнических и цифровых систем, вычислительных машин вражеских кораблей. Помимо этого возможным представляется использование электроэнергии корабля для запуска и разгона снаряда (рельсотрон). Не стоит лишь забывать о том, что все подобные системы требуют очень больших запасов электрической энергии на борту корабля, а также возможности ее восстановления или поддержания на требуемом уровне без захода судна на базу.

В наши дни электромоторы применяются на боевых кораблях и в составе главной энергетической установки, и в качестве вспомогательного движителя. Так как современные двигатели являются высокооборотными, приходится между ними и винтом размещать понижающий редуктор, потери мощности в нем могут доходить до 2%. А в случае электрической системы приходится использовать преобразователи частоты и генераторы с общим КПД менее 90%. Это ниже, чем у «чисто механической» системы (к примеру, газовая турбина и главный турбозубчатый агрегат). Поэтому в экономическом плане электродвижение представляется невыгодным.

В свое время изобретение гребного электродвигателя дало достаточно резкий скачок всему развитию подводного судостроения, тогда как применительно к надводным боевым судам оно решает лишь вспомогательные задачи. Несмотря на это энтузиасты более широкого применения на флоте «электромагнитной силы» никуда не исчезают. Стремясь подогреть к данной теме интерес, они вводят в обращение новые термины, к примеру, «расширенное применение электродвижения».

Реализовать полное электродвижение возможно лишь тогда, когда винт (или другой движитель) на всех режимах движения корабля приводится в действие лишь электромотором . В том случае, если на борту судна имеются механические источники энергии (турбина, дизельный двигатель и т.д.), обладающие возможностью крутить вал винта (чаще всего на больших ходах), то можно говорить о «прямом приводе со вспомогательным электродвигателем», или «частичным электродвижением».

«Полное электродвижение», которое построено на преобразовании механической энергии в электрическую, а затем снова в механическую энергию, понижает общий КПД. Это необходимо учитывать и кораблестроителям, и военным морякам. Представляется, что ожидаемое появление электромагнитных пушек (на фрегатах, корветах и эсминцах) и катапульт (на авианосцах) сделает некоторые потери энергии, возникающие при ее преобразовании из одного вида в другой, оправданными и возможными.

Литий-ионные батареи для подлодок

В связи с общей тенденцией на рост энергопотребления разнообразными системами кораблей (включая РЛС, БИУС, ГАК и другими) конструкторам требуется все более внимательно подходить к вопросу выработки и сохранения электроэнергии. В этом плане передовые в научно-техническом отношении страны мира довольно активно ведут работы по созданию литий-ионных батарей повышенной емкости. Есть свои успехи в этой области и в России.

Стоит отметить, что сам литий-ионный аккумулятор (Li-ion) впервые был выпущен компанией Sony еще в 1991 году, однако длительное время эти аккумуляторы использовались лишь в гражданской сфере. Данный тип аккумулятора сегодня очень широко распространен во всей бытовой технике и электронике, находя также применение и в качестве накопителя энергии в различных энергетических системах, и в качестве источника энергии в электромобилях. Сегодня это наиболее популярный вид аккумулятора для таких устройств, как ноутбуки, мобильные телефоны, цифровые видеокамеры и фотоаппараты, а также электромобили.

Литий-ионные аккумуляторы очень хорошо зарекомендовали себя в работе, но до недавнего времени им не находилось применения на флоте. Несмотря на то, что подобные аккумуляторы обладают рядом важных преимуществ перед классическими кислотными батареями, включая способность выдерживать повышенные токи разряда и зарядки, повышенную емкость, болей долгий жизненный цикл, меньшие расходы в ходе эксплуатации и т.д.

Естественно, все это не могло остаться в стороне от конструкторов военно-морской техники. К примеру, в конце 2014 года российское ЦКБ «Рубин», специализирующееся на проектировании подводных лодок и ведущее в нашей стране бюро подводного кораблестроения, заявило об успешном проведении цикла испытаний новых литий-ионных батарей, предназначенных для неатомных подводных лодок. Об этом журналистам рассказывал тогда генеральный директор ЦКБ «Рубин» Игорь Вильнит. Подобные батареи значительно увеличивают автономность подлодок, обладая большим сроком службы, а также не требуют для обслуживания и работы сложного оборудования.

В то же время в российском флоте применяются аккумуляторные батареи, срок действия которых ограничен, а цена, по оценкам экспертов, может достигать 300 млн. рублей. По словам Андрея Дьячкова, ранее возглавлявшего ЦКБ «Рубин», современные литий-ионные аккумуляторные батареи позволят увеличить время нахождения подводных лодок под водой минимум в 1,4 раза, в то время как потенциал данной технической идеи используется в настоящее время лишь на 35-40%, сообщало РИА Новости.

Направление является перспективным для флота, это давно заметили во всем мире. По информации ресурса shephardmedia.com, в марте 2020 года Военно-морские силы самообороны Японии собираются ввести в строй первую в мире неатомную подлодку (11-я в серии субмарин типа Soryu), которая получит литий-ионные аккумуляторные батареи. Это позволит японцам отказаться от использования на подлодках не только традиционных свинцово-кислотных аккумуляторных батарей, но и воздухонезависимых двигателей Стирлинга.

Японская неатомная подводная лодка SS 503 Hakuryū типа Soryu.

Согласно словам вице-адмирала в отставке Масао Кобаяси, использование литиево-ионных аккумуляторных батарей «должно драматически изменить действия неатомных подводных лодок». Такие батареи обеспечивают субмаринам продолжительность подводного хода, которая сопоставима с продолжительностью хода при использовании воздухонезависимых энергетических установок (ВНЭУ) на небольших скоростях, однако при этом за счет высокой емкости они могут обеспечить довольно высокую продолжительность подводного хода и на больших скоростях, что особенно важно для подлодок при выходе их в атаку или при уклонении от противника. При этом в отличие от ВНЭУ, подводная лодка в состоянии постоянно пополнять запас энергии в литиево-ионных батареях за счет подзарядки батарей с использованием устройства РДП (устройство для работы двигателя под водой).

Согласно словам вице-адмирала Кобаяси, литиево-ионные батареи также отличаются более коротким временем подзарядки в сравнении со свинцово-кислотными батареями, это достигается за счет большей силы заряда тока. Также такие аккумуляторы долговечнее, а электрические схемы с их использованием проще в построении электрических сетей и управлении. Оборотной стороной медали называют высокую стоимость литиево-ионных батарей. Так контрактная цена 11-й субмарины типа Soryu составляет 64,4 миллиарда иен (порядка 566 миллионов долларов), против 51,7 миллиарда иен (454 миллиона долларов) у десятой лодки этого же типа. Почти вся разница в цене субмарин придется на литий-ионные аккумуляторные батареи и соответствующие электросистемы.

Использование гребных электродвигателей

Для военных моряков очень большое значение имеет уменьшение демаскирующих признаков. Лучше всего этому способствует использование гребного электродвигателя (ГЭД), который считается наиболее малошумным из всех распространенных сегодня корабельных силовых установок. Правда, для надводного судна снижение акустического поля является не таким актуальным, как для подводного флота. Все дело в том, что главным демаскирующим фактором для надводных кораблей является заметность в радиолокационном (радиоволны хорошо отражаются от надстроек и борта), а также инфракрасном полях (силовая установка, построенная на основе двигателя внутреннего сгорания).

Поэтому для надводных кораблей наиболее актуальным уменьшение гидроакустического поля представляется для специализированных судов - противолодочных (сторожевых) кораблей. Чаще всего они ведут поиск вражеских субмарин в режиме малого и среднего хода - не более 15 узлов (около 28 км/ч) с помощью гидроакустических комплексов с буксируемыми, погружаемыми и подкильевыми антеннами. Дальность действия таких антенн напрямую зависит от вибрационного и шумового «портретов» корабля-носителя, чем ниже скорость движения судна, тем эффективнее работают антенны.

Модель ГЭД

Именно меньшая шумность - основное достоинство установок с электродвижением. Никакую другую энергетическую установку невозможно сделать менее шумной, чем установку с электродвигателем. При этом существенный вклад в общий шумовой «фон» корабля вносит гребной вал, который жестко связан через редуктор с основными двигателями. Для снижения этого шума используются специальные муфты. Помимо этого вибрация двигателей передается и на обшивку корпуса судна (корабельные двигатели, редукторы, механизмы ставят на фундамент, который жестко связан с набором корпуса, а тот в свою очередь - с обшивкой корпуса). Именно обшивка корабля излучает колебания во внешнюю среду (в воду), а это и является источником шума, который называют структурным. Для снижения «структурного шума» широко практикуется установка всех механизмов на амортизаторы.

В энергетических установках с полным электродвижением гребной вал никак не связан с основным (для него) источником шума - главным двигателем, так как на всех режимах хода он вращается лишь электродвигателем. Помимо этого в «электрической» главной энергетической установке генератор вместе с первичным двигателем можно расположить даже в надстройке корабля (к примеру, так размещена часть дизель-генераторов на британских фрегатах проекта 23), максимальным образом удалив их от наружной обшивки судна.

Правда, на скорости движения более 15 узлов все преимущества электродвижения в плане бесшумности такого хода заканчиваются. Это происходит из-за того, что главной составляющей подводного шума (на некотором удалении от судна) становится шум от кавитации гребного винта. Поэтому на боевых кораблях имеет смысл бороться со снижением шума от ГЭУ лишь на скоростях до 15 узлов. Поэтому и применение электродвижения можно использовать лишь для обеспечения кораблю поискового хода, что и подходит противолодочным судам.

Сегодня известны примеры, когда отдельные конструкторы пытались снизить акустическую заметность боевых кораблей при помощи сокращения длины валов, утверждая, что такое решение достигается с помощью грамотного размещения элементов силовой установки внутри корпуса боевого корабля и надстройки. Некоторые из таких решений действительно были реализованы на практике, к примеру, на британских , силовая установка которых состоит из 2-х газовых турбин Rolls-Royce, пары дизель-генераторов Wärtsilä, а также электродвигателей Converteam. Для КВМС с 2003 по 2011 год было построено 6 таких эсминцев.

Эсминец тип 45 Daring

В США активно ведется строительство перспективных эсминцев нового поколения, получивших обозначение . Работы стартовали еще в 2008 году, головной корабль серии вступил в строй в октябре 2016 года. Энергетическая установка корабля включает газовые турбины и асинхронные электродвигатели мощностью 36,5 МВт с рабочим напряжением 6600 В. На третий корабль серии DDG-1002 Lyndon B. Johnson планируется поставить высокотемпературный сверхпроводимый синхронный двигатель с постоянными магнитами, его мощность составит те же 36,5 МВт, а частота вращения вала - 2 оборота в секунду.

В то же время начальная эксплуатация эсминца нового поколения продемонстрировала всему миру, что он еще ненадежен и страдает от детских болезней, его эксплуатация сопровождается многочисленными поломками. Так 22 ноября 2016 года ГЭУ эсминца Zumwalt вышла из строя в тот момент, когда он проходил Панамский канал. Обездвиженный корабль пришлось буксировать на базу с помощью самых обыкновенных буксиров, которые не обременены силовыми установками нового типа.

Еще одним положительным качеством электродвижения помимо снижения шумности, можно назвать повышение маневренности судов . Как у газовой турбины, так и у дизеля существует значение минимальной мощности, следовательно, есть и минимальное значение устойчивой скорости хода. В то время как при помощи электродвигателя можно достаточно легко менять частоту и направление вращения гребного вала, а значит скорость и направление движения судна. Благодаря этому главная энергетическая установка с электродвигателем уже достаточно давно применяется на тех кораблях, которые по своему назначению должны обладать максимально возможной маневренностью: буксиры, паромы, ледоколы, плавучие краны и т.п.

Азиподы

В перспективе еще одним несомненным плюсом электродвижения для боевых кораблей может стать отказ от использования гребных валов. Начиная с 1992 года в качестве гребных электродвигателей (ГЭД) начали довольно широко использоваться винто-рулевые комплексы (ВРК) с погруженным гребным двигателем (podded drive), в которых ГЭД был вынесен за пределы корпуса корабля и установлен в подводной капсуле (коконе), обладающей высокими гидродинамическими свойствами.

Azipod - azimuthing podded propulsion system

Типовые ВРК создают или с одним упорным, или с двумя соосными (тяговым и упорным) винтами. В нашей стране наибольшее распространение получили финские системы под обозначением «Азипод» (Azipod - azimuthing podded propulsion system) с одним упорным винтом и ГЭД мощностью от 1,5 до 4,5 МВт. Основными достоинствами ВРК называют: возможность разворота капсулы в горизонтальной плоскости сразу на 360 градусов, то есть реверс направления вращения винта на 100% мощности; валопровод и возможность функционирования винта фиксированного шага на небольших скоростях (до 0,1 от нормальной). Помимо этого ВРК позволяет значительно снизить уровень вибрации и шума силовой энергетической установки, а также установить электроэнергетическое оборудование в труднодоступных для размещения груза местах, это, в свою очередь, позволяет конструкторам более рационально использовать полезное пространство корабля.

Самым эффективным источником тока для ВРК называют сеть переменного тока, которая позволяет не только повысить экономичность и надежность главной энергетической установки, но и использовать для привода винта асинхронные двигатели, оснащенные короткозамкнутым ротором и не требующие обслуживания в процессе эксплуатации. Для того чтобы улучшить пусковые качества асинхронного привода, достаточно часто применяются глубокопазные и двухклеточные роторы специального исполнения. Частоту вращения винта в системах, называемых Azipod, можно регулировать при помощи тиристорных преобразователей частоты. Использование ВРК на практике существенно повышает маневренность кораблей и позволяет даже довольно крупным из них обходиться в порту без помощи со стороны буксиров. Помимо этого отсутствие гребных валов повышает полезный объем в корпусе судна.

Известно, что системы электродвижения были применены на российском транспорте вооружений «Академик Ковалев», который был построен на ЦС «Звездочка» в Северодвинске и принят в состав флота в декабре 2015 года. Особенностью корабля проекта 20180ТВ, созданного специалистами ЦМКБ «Алмаз», стала его движительная установка: дизель-генераторы корабля вырабатывают электричество, которое питает электродвигатели в составе ориентируемых винторулевых комплексов. Благодаря наличию на корабле ВРК, этот транспорт вооружений отличается повышенной маневренностью, он может удерживать заданный курс при существенном волнении на море и успешно решать задачи, поставленные перед ним командованием ВМФ. В настоящее время ЦС «Звездочка» осуществляет постройку второго корабля в рамках того же проекта.

Специалисты считают, что подводные и надводные корабли с электродвижением, наиболее распространенные уже сегодня, в дальнейшем будут лишь совершенствоваться, особенно с учетом все более широкого применения винто-рулевых комплексов. При этом в будущем электродвижение на кораблях военно-морского флота во всех странах мира будет приобретать все больший размах.