Виды систем впрыска топлива в бензиновых двигателях. Распределенный или непосредственный впрыск (MPI или GDI)

На сегодняшний день системы впрыска активно применяются на бензиновых и дизельных ДВС. Стоит отметить, что для каждой вариации мотора подобная система будет в существенной мере отличаться. Об этом далее в статье.

Система впрыска, назначение, чем отличается система впрыска бензинового двигателя от системы впрыска дизеля

Основное назначение системы впрыска (другое название — инжекторная система) — обеспечение своевременной подачи горючего в рабочие цилиндры мотора.

В бензиновых моторах процесс впрыска поддерживает образование воздушнотопливной смеси, после чего осуществляется ее воспламенение с помощью искры. В дизельных моторах подача горючего производится под высоким давлением — одна часть горючей смеси соединяется со сжатым воздухом и практически мгновенно самовоспламеняется.

Система впрыска бензина, устройство систем впрыска топлива бензиновых двигателей

Система впрыска топлива — составная часть топливной системы ТС. Основной рабочий орган любой системы впрыска — форсунка. Зависимо от метода образования воздушнотопливной смеси существуют системы непосредственного впрыска, распределенного впрыска и центрального впрыска. Системы распределенного и центрального впрыска — системы предварительного впрыска, то есть впрыск в них осуществляется во впускном коллекторе, не доходя до камеры сгорания.

Системы впрыска бензиновых моторов могут иметь электронное либо механическое управление. Самым совершенным считается электронное управление впрыском, которое обеспечивает существенную экономию горючего и снижение вредных выбросов в атмосферу.

Впрыск горючего в системе осуществляется импульсно (дискретно) или непрерывно. С точки зрения экономии перспективным считается импульсный впрыск горючего, используемый всеми современными системами.

В моторе система впрыска, как правило, соединена с системой зажигания и создает объединенную систему зажигания и впрыска (к примеру, системы Fenix, Motronic). Система управления мотором обеспечивает согласованную работу систем.

Системы впрыска бензиновых двигателей, типы систем впрыска топлива, достоинства и недостатки каждого вида систем впрыска бензиновых двигателей

На бензиновых моторах применяются такие системы подачи горючего — непосредственный впрыск, комбинированный впрыск, распределенный впрыск (многоточечный), центральный впрыск (моновпрыск).

Центральный впрыск. Подача горючего в данной системе производится посредством топливной форсунки, расположенной во впускном коллекторе. А так как форсунка всего одна, эту систему называют еще моновпрыском.

На сегодняшний день системы центрального впрыска утратили свою актуальность, поэтому они и не предусмотрены в новых моделях авто, однако в некоторых старых ТС их все же можно встретить.

Преимущества моновпрыска — надежность и простота применения. К минусам данной системы можно отнести высокий расход горючего и низкий уровень экологичности мотора. Распределенный впрыск. В системе многоточечного впрыска предусмотрена отдельная подача топлива на каждый цилиндр, который оборудован индивидуальной топливной форсункой. ТВС, при этом, возникает лишь во впускном коллекторе.

На сегодняшний день большинство бензиновых моторов оборудовано системой распределенной подачи горючего. Преимущества подобной системыоптимальный расход горючего, высокая экологичность, оптимальные потребности к качеству потребляемого горючего.

Непосредственный впрыск. Одна из самых прогрессивных и совершенных систем впрыска. Принцип действия данной системы основывается на прямой (непосредственной) подаче горючего в камеру сгорания.

Система непосредственной подачи горючего дает возможность получать качественный состав топлива на всех этапах эксплуатации мотора, чтобы улучшить процесс сгорания ТВС, увеличить рабочую мощность мотора и снизить уровень отработанных газов.

Недостатки данной системы впрыска — довольно сложная конструкция и большие требования к качеству горючего.

Комбинированный впрыск. В системе данного типа объединяются две системы — распределенный и непосредственный впрыск. Как правило, она применяется, чтобы уменьшить выбросы токсичных компонентов и отработанных газов, с помощью чего можно достигнуть высоких показателей экологичности мотора.

Системы впрыска дизельных двигателей, виды систем, достоинства и недостатки каждого вида систем впрыска дизельного топлива

На современных дизельных моторах используются следующие системы впрыска — система Common Rail, система насос-форсунки, система с распределительным или рядным топливным насосом высокого давления (ТНВД).

Самыми востребованными и прогрессивными считаются насос-форсунки и Common Rail. ТНВД — центральный компонент любой топливной системы дизельного мотора.
Подача топливной смеси в дизельных моторах может производиться в предварительную камеру или прямо в камеру сгорания.

В настоящее время отдается предпочтение системе непосредственного впрыска, отличающейся повышенным уровнем шума и менее плавной работой мотора в сравнении с подачей в предварительную камеру, однако при этом обеспечивается более важный показатель — экономичность.

Система насос-форсунки. Данная система используется для подачи, а также впрыска горючей смеси под большим давлением насос-форсунками. Ключевая особенность данной системы — в одном устройстве объединены две функции — впрыск и создание давления.

Конструктивный недостаток данной системы — насос оборудован постоянным приводом от распределительного вала мотора (не отключаемый), который способен привести к быстрому износу системы. В результате этого изготовители все чаще отдают предпочтение системам Common Rail.

Аккумуляторный впрыск (Common Rail). Более совершенная конструкция подачи горючей смеси для множества дизельных моторов. В такой системе горючее подается от рампы к топливным форсункам, которая еще называется аккумулятором высокого давления, в результате чего у системы образовалось еще одно название — аккумуляторный впрыск.

Система Common Rail предусматривает проведение следующих этапов впрыска — предварительного, главного и дополнительного. Это дает возможность уменьшить вибрации и шум мотора, сделать процедуру самовоспламенения горючего более эффективной, уменьшить вредные выбросы.

Выводы

Чтобы управлять системами впрыска на дизелях предусматривается наличие электронных и механических устройств. Механические системы дают возможность контролировать рабочее давление, момент и объем впрыска горючего. В электронных системах предусмотрено более эффективное управление дизельными моторами в целом.

Многие современные инжекторные двигатели оснащаются различной системой впрыска топлива. Уже давно ушел в историю моновпрыск, а тем более карбюратор, и сейчас остались два основных вида – это распределенный и непосредственный тип (на многих автомобилях они «скрыты» под аббревиатурами MPI и GDI). Однако простой обыватель реально не понимает в чем разница, а также — какой из них лучше. Сегодня мы закроем этот пробел в конце будет видео версия и голосование, так что читаем-смотрим-голосуем …


Действительно пришел в салон смотришь на комплектации, а там сплошные MPI или GDI, могут быть еще и ТУРБО варианты. Начинаешь спрашивать консультанта, а он однозначно хвалит непосредственный впрыск, а вот распределенный (ну если уж денег не хватает). НО чем он так хорош то? Зачем переплачивать, и тратится именно на него?

Распределенный или многоточечный впрыск топлива

Начнем именно с него, все потому что он появился первым (перед своим оппонентом). Прототипы существовали еще на заре 20века, правда они были далеко от идеала и зачастую использовали механическое управление.

Сокращение MPI (Multi Point Injection) – многоточечный распределенный впрыск. По сути это и есть современный инжектор

Сейчас с развитием электроники карбюратор и прочие системы питания, которые были на заре, уходят в прошлое. Распределенный впрыск это электронная система питания, которая основана на инжекторах (от слова injection — впрыск), топливной рампе (куда они устанавливаются), электронном насосе (который крепится в баке). Все просто ЭБУ дает приказания насосу качать топливо, оно по магистрали идет до топливной рампы, далее в инжектора и после распыляется на уровне .

Но эта система также шлифовалась годами. Существуют три типа впрыска:

  • Одновременный . Раньше в 70 – 80 годы никого не заботила цена на бензин (стоял он дешево), также никто не думал об экологии. Поэтому впрыск топлива происходил сразу во все цилиндры, при одном обороте коленчатого вала. Это было крайне не практично, потому как обычно (в 4 цилиндровом двигателе) — два поршня работают над сжатием, а другие два отводят отработанные газы. И если подавать бензин сразу во все «горшки» то другие два просто выкинут его в глушитель. Крайне затратно по бензину и очень вредно по экологии.
  • Попарно-параллельный . Этот вид в распределительном впрыске как вы наверное уже догадались, происходил в два цилиндра по очереди. То есть топливо поступало именно туда, где сейчас происходит сжатие.
  • Фазированный тип . Это самый совершенный на данный момент метод, здесь каждая форсунка живет «своей жизнью» и управляется отдельно. Она подает бензин именно перед тактом впуска. Здесь происходит максимальная экономия смеси, а также высокая экологическая составлявшая

Я думаю с этим понятно, именно третий тип сейчас устанавливается на все современные модели автомобилей.

ГДЕ РАСПОЛАГАЕТСЯ ИНЖЕКТОР . Здесь кроется основное отличие распределительного впрыска от непосредственного. Форсунка находится на уровне впускного коллектора, рядом с блоком двигателя.

Смешение воздуха и бензина происходит именно в коллекторе. От дроссельной заслонки поступает дозированный воздух (который вы регулируете педалью газа), при достижении им форсунки впрыскивается топливо, получается смесь, которая уже затягивается через впускные клапана в цилиндры мотора (дальше сжатие, воспламенение и отвод отработанных газов).

ПЛЮСАМИ такого метода можно назвать относительную простоту конструкции, дешевизну, также сами инжектора не должны быть сложными и устойчивыми к высоким температурам (потому как не имею контакта с горючей смесью), работают дольше без очистки, не так требовательны к качеству топлива.

МИНУСЫ больший расход топлива (по сравнению с оппонентом), меньшая мощность

НО из-за простоты, дешевизны и неприхотливости устанавливаются на большое количество моторов не только бюджетного сегмента, но и D-класса.

Появился не так давно, в 80 – 90 года прошлого века. Развитием активно занимались такие бренды как MERCEDES, VOLKSWAGEN, BMW и т.д.

Сокращение GDI (Gasoline Direct Injection) – впрыск непосредственно в камеру сгорания

Впрыск происходит по принципу фазированного типа, то есть каждая форсунка управляется отдельно. Зачастую они закреплены в рампу высокого давления (что-то наподобие COMMON RAIL), но бывают и отдельные элементы топливо подходит именно к каждой отдельно.

КАКОЕ ЗДЕСЬ ОТЛИЧИЕ – форсунки вкручиваются в сам блок двигателя и имеют непосредственное соприкосновение с камерой сгорания и воспламененной топливной смесью.

Воздух также подается через дроссель, далее по впускному коллектору – через клапана заходит в цилиндры мотора, после этого на цикле сжатия впрыскивается топливо, смешиваясь с воздухом и воспламеняясь от свечи. ТО есть смесь происходит непосредственно в двигателе, а не во впускном коллекторе, в этом то и кроется основная РАЗНИЦА!

ПЛЮСЫ. Топливная экономичность (может достигать до 10%), большая мощность (до 5%), лучшая экология.

МИНУСЫ . Нужно понимать форсунка находится рядом с воспламененной смесью, из этого вытекает:

  • Сложная конструкция
  • Сложное обслуживание
  • Дорогой ремонт и профилактика
  • Требование к качеству топлива (иначе банально забьется)

Как видите эффективно-технологично, но дорого обслуживать.

Что же лучше — таблица?

Предлагаю подумать, составил таблицу по плюсам того и другого типов

Как видите и тот и другой тип имеют весомые преимущества перед другим, видимо пока существуют оба.

Сейчас видео версия смотрим.

Д.Соснин

Начинаем публикацию статей по современным системам впрыска топлива для бензиновых двигателей внутреннего сгорания легковых автомобилей.

1. Предварительные замечания

Топливное питание бензиновых двигателей на современных легковых автомобилях реализуется с применением систем впрыска. Эти системы по принципу действия принято подразделять на пять основных групп (рис. 1): K, Mono, L, M, D.

2. Преимущества систем впрыска

Топливовоздушная смесь (ТВ-смесь) подается от карбюратора к цилиндрам двигателя внутреннего сгорания (ДВС) по длинным трубам впускного коллектора. Длина этих труб к различным цилиндрам двигателя неодинакова, а в самом коллекторе имеет место неравномерность нагрева стенок, даже на полностью прогретом двигателе (рис. 2).


Это приводит к тому, что из однородной ТВ-смеси, созданной в карбюраторе, в разных цилиндрах ДВС образуются неодинаковые топливовоздушные заряды. Как следствие, двигатель не отдает расчетную мощность, теряется равномерность крутящего момента, расход топлива и количество вредных веществ в выхлопных газах увеличиваются.

Бороться с этим явлением в карбюраторных двигателях очень сложно. Следует также отметить, что современный карбюратор работает на принципе пульверизации, при которой распыление бензина происходит в струе всасываемого в цилиндры воздуха. При этом образуются достаточно крупные капли топлива (рис. 3, а),

Что не обеспечивает качественного перемешивания бензина и воздуха. Плохое перемешивание и крупные капли облегчают оседание бензина на стенках впускного коллектора и на стенках цилиндров во время всасывания ТВ-смеси. Но при принудительном распылении бензина под давлением через калиброванное сопло форсунки частицы топлива могут иметь значительно меньшие размеры по сравнению с распылением бензина при пульверизации (рис. 3, б). Особенно эффективно бензин распыляется узким пучком под высоким давлением (рис. 3, в).

Установлено, что при распылении бензина на частицы диаметром менее 15...20 мкм его перемешивание с кислородом воздуха происходит не как взвешивание частиц, а на молекулярном уровне. Это делает ТВ- смесь более устойчивой к воздействию перепадов температуры и давления в цилиндре и длинных трубах впускного коллектора, что способствует более полному ее сгоранию.

Так родилась идея заменить пульверизационные жиклеры механического инерционного карбюратора на центральную безынерционную форсунку впрыска (ЦФВ), открывающуюся на заданное время по электроимпульсному сигналу управления от блока электронной автоматики. При этом, помимо качественного распыления и эффективного перемешивания бензина с воздухом, легко получать более высокую точность их дозирования в ТВ-смеси на всех возможных режимах работы ДВС.

Таким образом, за счет применения системы топливного питания с впрыском бензина двигатели современных легковых автомобилей не имеют вышеуказанных недостатков, присущих карбюраторным двигателям, т.е. они более экономичны, обладают более высокой удельной мощностью, поддерживают постоянство крутящего момента в широком интервале частот вращения, а выброс вредных веществ в атмосферу с отработавшими газами минимален.

3. Система впрыска бензина "Mono-Jetronic"

Впервые система центрального одноточечного импульсного впрыска топлива для бензиновых двигателей легковых автомобилей была разработана фирмой BOSCH в 1975 году. Эта система получила название "Mono-Jetronic" (Monojet - одиночная струя) и была установлена на автомобиле "Volkswagen".

На рис. 4 показан центральный впрыскивающий узел системы "Mono-Jetronic". Из рисунка видно, что центральная форсунка впрыска (ЦФВ) устанавливается на стандартном впускном коллекторе вместо обычного карбюратора.

Но в отличие от карбюратора, в котором автоматика смесеобразования реализуется механическим управлением, в моносистеме впрыска применяется чисто электронное управление.

На рис. 5 показана упрощенная функциональная схема системы "Mono-Jetronic".

Электронный блок управления (ЭБУ) работает от входных датчиков 1-7, которые фиксируют текущее состояние и режим работы двигателя. По совокупности сигналов от этих датчиков и с использованием информации из трехмерной характеристики впрыска в ЭБУ вычисляются начало и продолжительность открытого состояния центральной форсунки 15.

На основании расчетных данных в ЭБУ формируется электроимпульсный сигнал S управления для ЦФВ. Этот сигнал воздействует на обмотку 8 магнитного соленоида форсунки, запорный клапан 11 которой открывается, и через распылительное сопло 12 бензин принудительно под давлением 1,1 бар в топливоподающей магистрали 19 распыляется во впускной коллектор через открытую дроссельную заслонку 14.

При заданных размерах диафрагмы дроссельной заслонки и калиброванного сечения распылительного сопла массовое количество пропущенного в цилиндры воздуха определяется степенью открытия дроссельной заслонки, а массовое количество впрыснутого в воздушный поток бензина - продолжительностью открытого состояния форсунки и подпорным (рабочим) давлением в топливоподающей магистрали 19.

Для того чтобы бензин сгорал полностью и наиболее эффективно, массы бензина и воздуха в ТВ-смеси должны находиться в строго определенном соотношении, равном 1/14,7 (для высокооктановых сортов бензина). Такое соотношение называется стехиометрическим, и ему соответствует коэффициент а избытка воздуха, равный единице. Коэффициент а = Мд/М0, где М0 - количество массы воздуха, теоретически необходимой для полного сгорания данной порции бензина, а Мд- масса фактически выгоревшего воздуха.

Отсюда ясно, что в любой системе впрыска топлива обязательно должен иметься измеритель массы воздуха, впущенного в цилиндры двигателя при всасывании.

В системе "Mono-Jetronic" масса воздуха рассчитывается в ЭБУ по показаниям двух датчиков (см. рис. 4): температуры всасываемого воздуха (ДТВ) и положения дроссельной заслонки (ДПД). Пер вый расположен непосредственно на пути воздушного потока в верхней части центральной форсунки впрыска и представляет собой миниатюрный полупроводниковый термистор, а второй является резистивным потенциометром, движок которого насажен на поворотную ось (ПДЗ) дроссельной заслонки.

Так как конкретному угловому положению дроссельной заслонки соответствует строго определенное объемное количество пропущенного воздуха, то дроссельный потенциометр выполняет функцию расходомера воздуха. В системе "Mono-Jetronic" он является также датчиком нагрузки двигателя.

Но масса всасываемого воздуха в значительной степени зависит от температуры. Холодный воздух более плотный, а значит более тяжелый. По мере повышения температуры плотность воздуха и его масса уменьшаются. Влияние температуры учитывается датчиком ДТВ.

Датчик ДТВ температуры всасываемого воздуха, как полупровод никовый термистор с отрицательным температурным коэффициентом сопротивления, изменяет величину резистивности от 10 до 2,5 кОм при изменении температуры от -30 до +20°С. Сигнал датчика ДТВ используется только в таком температурном диапазоне. При этом базовая продолжительность впрыска бензина корректируется с помощью ЭБУ в интервале 20...0%. Если температура всасываемого воздуха выше +20°С, то сигнал датчика ДТВ блокируется в ЭБУ и датчик не используется.

Сигналы от датчиков положения дроссельной заслонки (ДПД) и температуры всасываемого воздуха (ДТВ) в случаях их отказов дублируются в ЭБУ сигналами датчиков частоты вращения (ДОД) и температуры охлаждающей жидкости (ДТД) двигателя.

По рассчитанному в ЭБУ объему воздуха, а также по сигналу о частоте вращения двигателя, который поступает от датчика числа оборотов системы зажигания, определяется требуемая (базовая) продолжительность открытого состояния центральной форсунки впрыска.

Так как подпорное давление Рт в топливоподающей магистрали (ПБМ) постоянно (для "Mono-Jetronic" Рт = 1...1,1 бар), а пропускная способность форсунки задана суммарным сечением отверстий распылительного сопла, то время открытого состояния форсунки однозначно определяет количество впрыснутого бензина. Момент впрыска (на рис. 5 сигнал от датчика ДМВ) обычно задается одновременно с сигналом на воспламенение ТВ-смеси от системы зажигания (через 180° поворота коленвала ДВС).

Таким образом, при электронном управлении процессом смесеобразования обеспечение высокой точности дозировки впрыскиваемого бензина в измеренное количество массы воздуха является легко решаемой задачей и, в конечном счете, точность дозирования определяется не электронной автоматикой, а точностью изготовления и функцио нальной надежностью входных датчиков и форсунки впрыска.

На рис. 6 показана главная деталь системы "Mono-Jetronic" - центральная форсунка впрыска (ЦФВ).


Центральная форсунка впрыска представляет собой бензоклапан, который открывается электрическим импульсом, поступающим от электронного блока управления. Для этого в форсунке имеется электромагнитный соленоид 8 с подвижным магнитным керном 14. Основной проблемой при создании клапанов для импульсного впрыска является необходимость обеспечения высокой скорости срабатывания запорного устройства 9 клапана как на открывание, так и на закрытие. Решение проблемы достигается облегчением магнитного керна соленоида, увеличением тока в импульсном сигнале управления, подбором упругости возвратной пружины 13, а также формой притертых поверхностей для распылительного сопла 10.

Сопло форсунки (рис. 6, а) выполнено в виде раструба капиллярных канальцев, число которых обычно не менее шести. Углом при вершине раструба задается раскрыв струи впрыска, которая имеет форму воронки. При такой форме струя бензина не попадает на дроссельную заслонку даже при малом ее открытии, а пролетает в два тонких полумесяца открывшейся щели.

Центральная форсунка системы "Mono-Jetronic" надежно обеспечивает минимальную продолжительность открытого состояния распылитель ного сопла 11 в течение 1±0,1 мс. За такое время и при рабочем давлении в 1 бар через распылительное сопло площадью в 0,08 мм2 впрыскивается около одного миллиграмма бензина. Этому соответствует расход топлива 4 л/ч на минимальных холостых оборотах (600 об/мин) прогретого двигателя. При пуске и прогреве холодного двигателя форсунка открывается на более продолжительное время (до 5...7 мс). Но с другой стороны максимальная продолжительность впрыска на прогретом двигателе (время открытого состояния форсунки) ограничивается предельной частотой вращения коленвала ДВС (6500...7000 мин-1) в режиме полного дросселя и не может быть более 4 мс. При этом тактовая частота срабатывания запорного устройства форсунки на холостом ходу не менее 20 Гц, а при полной нагрузке - не более 200...230 Гц.

С особой тщательностью изготавливается датчик ДПД положения дроссельной заслонки (дроссельный потенциометр), показанный на рис. 7. Его чувствительность к повороту движка должна отвечать требованию ±0,5 угловых градусов поворота оси 13 дросселя. По строгому угловому положению оси дросселя определяются начала двух режимов работы двигателя: режима холостого хода (3±0,5°) и режима полной нагрузки (72,5±0,5°).

Для обеспечения высокой точности и надежности резистивные дорожки потенциометра, которых четыре, включены по схеме, показанной на рис. 7, б, а ось движка потенциометра (движок двухконтактный) посажена в безлюфтовый тефлоновый подшипник скольжения.

Потенциометр и ЭБУ соединены между собой четырехпроводным кабелем через контактный разъем. Для повышения надежности соединений контакты в разъеме и в фишке потенциометра позолочены. Контакты 1 и 5 предназначены для подачи опорного напряжения 5±0,01 В. Контакты 1 и 2 - для снятия сигнального напряжения при повороте дроссельной заслонки на угол от 0 до 24° (0...30 - режим холостого хода; 3...24° - режим малых нагрузок двигателя). Контакты 1 и 4 - для снятия сигнального напряжения при повороте дроссельной заслонки на угол от 18 до 90° (18...72,5° - режим средних нагрузок, 72,5...90° - режим полной нагрузки двигателя).

Сигнальное напряжение с дроссельного потенциометра дополнительно используется:
для обогащения ТВ-смеси при разгоне автомобиля (регистрируется быстрота изменения сигнала от потенциометра);
для обогащения ТВ-смеси в режиме полной нагрузки (регистрируется значение сигнала с потенциометра после 72,5° поворота дроссельной заслонки в сторону увеличения);
для прекращения впрыска топлива в режиме принудительного холостого хода (регистрируется сигнал потенциометра, если угол открытого состояния дроссельной заслонки менее 3°. Одновременно контролируется частота W вращения двигателя: если W>2100 мин-1, то подача топлива прекращается и восстанавливается вновь при W
Интересной особенностью системы впрыска "Mono-Jetronic" является наличие в ее составе подсистемы стабилизации оборотов холостого хода с помощью электросервопривода, который воздействует на ось дроссельной заслонки (рис. 8). Электросервопривод снабжен реверсным электродвигателем 11 постоянного тока.

Сервопривод включается в работу в режиме холостого хода и совместно со схемой отключения вакуумного регулятора угла опережения зажигания (стабилизации холостого хода - рис. 2) обеспечивает стабилизацию частоты вращения двигателя в этом режиме.

Такая подсистема стабилизации холостого хода работает следующим образом.

Когда угол открытого состояния дроссельной заслонки менее 3°, сигнал К (см. рис. 9)


Является для ЭБУ сигналом режима холостого хода (замыкается концевой выключатель ВК штоком сервопривода). По этому сигналу запорный пневмоклапан ЗПК срабатывает и канал разрежения от задроссельной зоны впускного коллектора к вакуумному регулятору ВР перекрывается. Вакуумный регулятор с этого момента не работает и угол опережения зажигания становится равным значению установочного угла (6° до ВМТ). При этом двигатель на холостых оборотах работает устойчиво. Если в это время включается кондиционер или другой мощный потребитель энергии двигателя (например, фары дальнего света опосредствованно через генератор), то его обороты начинают падать. Двигатель может заглохнуть. Чтобы этого не происходило, по команде от электронной схемы управления холостым ходом (ЭСХХ) в контроллере включается электросервопривод, который несколько приоткрывает дроссельную заслонку. Обороты увеличиваются до номинального значения для данной температуры двигателя. Ясно, что при снятии нагрузки с двигателя его обороты уменьшаются до нормы тем же электросервоприводом.

В ЭБУ системы "Mono-Jetronic" имеется микропроцессор МКП (см. рис. 5) с постоянной и оперативной памятью (блок ЗУ). В постоянную память "зашита" эталонная трехмерная характеристика впрыска (ТХВ). Эта характеристика в какой-то мере подобна трехмерной характеристике зажигания, но отличается тем, что ее выходным параметром является не угол опережения зажигания, а время (продолжительность) открытого состояния центральной форсунки впрыска. Входными координатами характеристики ТХВ являются частота вращения двигателя (сигнал поступает от контроллера системы зажигания) и объем всасываемого воздуха (рассчитывается микропроцессором в ЭБУ впрыска). Эталонная характеристика ТХВ несет в себе опорную (базовую) информацию о стехиометрическом соотношении бензина и воздуха в ТВ-смеси при всех возможных режимах и условиях работы двигателя. Эта информация выбирается из памяти ЗУ в мик ропроцессор ЭБУ по входным координатам характеристики ТХВ (по сигналам датчиков ДОД, ДПД, ДТВ) и корректируется по сигналам от датчика температуры охлаждающей жидкости (ДТД) и кислородного датчика (КД).

О кислородном датчике надо сказать отдельно. Наличие его в системе впрыска позволяет удерживать состав ТВ-смеси постоянно в стехиометрическом соотношении (а=1). Это достигается тем, что датчик КД работает в цепи глубокой адаптивной обратной связи от системы выпуска отработавших газов к системе топливного питания (к системе впрыска).

Он реагирует на разность концентрации кислорода в атмосфере и в выхлопных газах. По сути дела датчик КД является химическим источником тока первого рода (гальваническим элементом) с твердым электролитом (специальная сотовая металлокерамика) и с высокой (не ниже 300°С) рабочей температурой. ЭДС такого датчика почти по ступенчатому закону зависит от разности концентрации кислорода на его элект родах (платино-радиевое пленочное покрытие с разных сторон пористой керамики). Наибольшая крутизна (перепад) ступеньки ЭДС приходится на значение а=1.

Датчик КД вворачивается в трубу выпускного канала (например, в выхлопной коллектор) и его чувствительная поверхность (положительный электрод) оказывается в потоке выхлопных газов. Над крепежной резьбой датчика имеются щели, через которые наружный отрицательный электрод сообщается с атмосферным воздухом. На автомобилях с каталитическим газонейтрализатором кислородный датчик устанавливается перед нейтрализатором и имеет спираль электроподогрева, так как температура выпускных газов перед нейтрализатором может быть ниже 300°С. Кроме того, электроподогрев кислородного датчика ускоряет его подготовку к работе.

Сигнальными проводами датчик соединен с ЭБУ впрыска. Когда в цилинд ры поступает бедная смесь (а>1), то концентрация кислорода в выхлопных газах чуть выше штатной (при а=1). Датчик КД выдает низкое напряжение (около 0,1 В) и ЭБУ по этому сигналу корректирует время продолжительности впрыска бензина в сторону его увеличения. Коэффициент а снова приближается к единице. При работе двигателя на богатой смеси кислородный датчик выдает напряжение около 0,9 В и работает в обратном порядке.

Интересно отметить, что кислородный датчик участвует в процессе смесеобразования только на режимах работы двигателя, при которых обогащение ТВ-смеси ограничено значением а>0,9. Это такие режимы как нагрузка на низких и средних оборотах и холостой ход на прогретом двигателе. В противном случае датчик КД отключается (блокируется) в ЭБУ и коррекция состава ТВ-смеси по концентрации кислорода в отработавших газах не осуществляется. Это имеет место, например, в режимах пуска и прогрева холодного двигателя и на его форсированных режимах (разгона и полной нагрузки). В этих режимах требуется значительное обогащение ТВ-смеси и поэтому срабатывание кислородного датчика ("прижимающего" коэффициент а к единице) здесь недопустимо.

На рис. 10 приведена функциональная схема системы впрыска "Mono-Jetronic" со всеми составными ее компонентами.

Любая система впрыска в своей топливоподающей подсистеме обязательно содержит замкнутое топ ливное кольцо, которое начинается от бензобака и заканчивается там же. Сюда входят: бензобак ББ, электробензонасос ЭБН, фильтр тонкой очистки топлива ФТОТ, распределитель топлива РТ (в системе "Mono-Jetronic" - это центральная форсунка впрыска) и регулятор давления РД, работающий по принципу стравливающего клапана при превышении заданного рабочего давления в замкнутом кольце (для системы "Mono-Jetronic" 1...1,1 бар).

Замкнутое топливное кольцо выполняет три функции:

С помощью регулятора давления поддерживает требуемое постоянное рабочее давление для распределителя топлива;

С помощью подпружиненной диафрагмы в регуляторе давления сохраняет некоторое остаточное давление (0,5 бар) после выключения двигателя, благодаря чему не допускается образование паровых и воздушных пробок в топливных магистралях при остывании двигателя;

Обеспечивает охлаждение системы впрыска за счет постоянной циркуляции бензина по замкнутому контуру. В заключение следует отметить, что система "Mono-Jetronic" используется только на легковых автомобилях среднего потребительского класса, например таких как западно-германские автомобили: "Volkswagen-Passat", "Volkswagen-Polo", "Audi-80".
РЕМОНТ&СЕРВИС-2"2000

Система впрыска топлива применяется для дозированной подачи топлива в двигатель внутреннего сгорания в строго определенный момент времени. От характеристик данной системы зависит мощность, экономичность и экологический класс двигателя автомобиля. Системы впрыска могут иметь различную конструкцию и варианты исполнения, что характеризует их эффективность и сферу применения.

Краткая история появления

Инжекторная система подачи топлива начала активно внедряться в 70-х годах, явившись реакцией на возросший уровень выбросов загрязняющих веществ в атмосферу. Она была заимствована в авиастроении и являлась экологически более безопасной альтернативой карбюраторному двигателю. Последний был оснащен механической системой подачи топлива, при которой топливо поступало в камеру сгорания за счет разницы давлений.

Первая система впрыска была практически полностью механической и отличалась малой эффективностью. Причиной этого был недостаточный уровень технического прогресса, который не мог полностью раскрыть ее потенциал. Ситуация изменилась в конце 90-х годов с развитием электронных систем управления работой двигателя. Электронный блок управления стал контролировать количество впрыскиваемого топлива в цилиндры и процентное соотношение компонентов топливовоздушной смеси.

Виды систем впрыска бензиновых двигателей

Существует несколько основных видов систем впрыска топлива, которые отличаются способом образования топливовоздушной смеси.

Моновпрыск, или центральный впрыск

Схема работы системы моновпрыска

Схема с центральным впрыском предусматривает наличие одной форсунки, которая расположена во впускном коллекторе. Такие системы впрыска можно найти только на старых легковых автомобилях. Она состоит из следующих элементов:

  • Регулятор давления — обеспечивает постоянную величину рабочего давления 0,1 МПа и предотвращает появление воздушных пробок в топливной системе.
  • Форсунка впрыска — осуществляет импульсную подачу бензина во впускной коллектор двигателя.
  • Дроссельная заслонка — выполняет регулирование объема подаваемого воздуха. Может иметь механический или электрический привод.
  • Блок управления — состоит из микропроцессора и блока памяти, который содержит эталонные данные характеристики впрыска топлива.
  • Датчики положения коленчатого вала двигателя, положения дроссельной заслонки, температуры и т.д.

Системы впрыска бензина с одной форсункой работают по следующей схеме:

  • Двигатель запущен.
  • Датчики считывают и передают информацию о состоянии системы в блок управления.
  • Полученные данные сравниваются с эталонной характеристикой, и, на основе этой информации, блок управления рассчитывает момент и длительность открытия форсунки.
  • На электромагнитную катушку направляется сигнал об открытии форсунки, что приводит к подаче топлива во впускной коллектор, где он смешивается с воздухом.
  • Смесь топлива и воздуха подается в цилиндры.

Распределенный впрыск (MPI)

Система с распределенным впрыском состоит из аналогичных элементов, но в такой конструкции предусмотрены отдельные форсунки для каждого цилиндра, которые могут открываться одновременно, попарно или по одной. Смешение воздуха и бензина происходит также во впускном коллекторе, но, в отличие от моновпрыска, подача топлива осуществляется только во впускные тракты соответствующих цилиндров.


Схема работы системы с распределенным впрыском

Управление осуществляется электроникой (KE-Jetronic, L-Jetronic). Это универсальные системы впрыска топлива Bosch, получившие широкое распространение.

Принцип действия распределенного впрыска:

  • В двигатель подается воздух.
  • При помощи ряда датчиков определяется объем воздуха, его температура, скорость вращения коленчатого вала, а также параметры положения дроссельной заслонки.
  • На основе полученных данных электронный блок управления определяет объем топлива, оптимальный для поступившего количества воздуха.
  • Подается сигнал, и соответствующие форсунки открываются на требуемый промежуток времени.

Непосредственный впрыск топлива (GDI)

Система предусматривает подачу бензина отдельными форсунками напрямую в камеры сгорания каждого цилиндра под высоким давлением, куда одновременно подается воздух. Эта система впрыска обеспечивает наиболее точную концентрацию топливовоздушной смеси, независимо от режима работы мотора. При этом смесь сгорает практически полностью, благодаря чему уменьшается объем вредных выбросов в атмосферу.


Схема работы системы непосредственного впрыска

Такая система впрыска имеет сложную конструкцию и восприимчива к качеству топлива, что делает ее дорогостоящей в производстве и эксплуатации. Поскольку форсунки работают в более агрессивных условиях, для корректной работы такой системы необходимо обеспечение высокого давления топлива, которое должно быть не менее 5 МПа.

Конструктивно система непосредственного впрыска включает в себя:

  • Топливный насос высокого давления.
  • Регулятор давления топлива.
  • Топливная рампа.
  • Предохранительный клапан (установлен на топливной рампе для защиты элементов системы от повышения давления больше допустимого уровня).
  • Датчик высокого давления.
  • Форсунки.

Электронная система впрыска такого типа от компании Bosch получила наименование MED-Motronic. Принцип ее действия зависит от вида смесеобразования:

  • Послойное — реализуется на малых и средних оборотах двигателя. Воздух подается в камеру сгорания на большой скорости. Топливо впрыскивается по направлению к свече зажигания и, смешиваясь на этом пути с воздухом, воспламеняется.
  • Стехиометрическое. При нажатии на педаль газа происходит открытие дроссельной заслонки и осуществляется впрыск топлива одновременно с подачей воздуха, после чего смесь воспламеняется и полностью сгорает.
  • Гомогенное. В цилиндрах провоцируется интенсивное движение воздуха, при этом на такте впуска происходит впрыск бензина.

Непосредственный впрыск топлива в бензиновом двигателе — наиболее перспективное направление в эволюции систем впрыска. Впервые он был реализован в 1996 году на легковых автомобилях Mitsubishi Galant, и сегодня его устанавливают на свои автомобили большинство крупнейших автопроизводителей.

В случае с системой впрыска топлива Ваш двигатель все ещё ​сосёт, но вместо того, чтобы полагаться только на всасываемое количество топлива, система впрыска топлива стреляет точно правильное количество топлива в камеру сгорания. Системы впрыска топлива прошли уже несколько ступеней эволюции, в них была добавлена электроника - это, пожалуй, было самым большим шагом в развитии этой системы. Но идея таких систем осталась та же: электрически активируемый клапан (инжектор) распыляет отмеренное количество топлива в двигатель. На самом деле основное различие между карбюратором и инжектором именно в электронном управлении ЭБУ - именно бортовой компьютер подаёт точно нужное количество топлива в камеру сгорания двигателя.

Давайте посмотрим, как работает система впрыска топлива и инжектор в частности.

Так выглядит система впрыска топлива

Если сердце автомобиля - это его двигатель, то его мозг - это блок управления двигателем (ЭБУ). Он оптимизирует работу двигателя с помощью датчиков, чтобы решить, как управлять некоторыми приводами в двигателе. Прежде всего, компьютер отвечает за 4 основные задачи:

  1. управляет топливной смесью,
  2. контролирует обороты холостого хода ,
  3. несёт ответственность за угол опережения зажигания,
  4. управляет фазами газораспределения.

Прежде чем мы поговорим о том, как ЭБУ осуществляет свои задачи, давайте о самом главном - проследим путь бензина от бензобака до двигателя - это и есть работа системы впрыска топлива. Первоначально после того, как капля бензина покидает стенки бензобака, она всасывается с помощью электрического топливного насоса в двигатель. Электрический топливный насос, как правило, состоит из непосредственно насоса, а также фильтра и передающего устройства.

Регулятор давления топлива в конце топливной направляющей с вакуумным питанием гарантирует, что давление топлива будет постоянным по отношению к давлению всасывания. Для бензинового двигателя давление топлива, как правило, составляет порядка 2-3,5 атмосферы (200-350 кПа, 35-50 PSI (фунтов на квадратный дюйм)). Топливные форсунки инжектора подключены к двигателю, но их клапаны остаются закрытыми до тех пор, пока ЭБУ не разрешит отправить топливо в цилиндры.

Но что же происходит, когда двигателю требуется топливо? Здесь в работу вступает инжектор . Обычно инжекторы имеют два контакта: один вывод подключен к аккумулятору через реле зажигания, а другой контакт проходит в ЭБУ. ЭБУ посылает пульсирующие сигналы в инжектор. За счёт магнита, на который и подаются такие пульсирующие сигналы, открывается клапан инжектора, и в его сопло подаётся некоторое количество топлива. Поскольку в инжекторе очень высокое давление (значение приведено выше), открывшийся клапан направляет топливо с высокой скоростью в сопло распылителя инжектора. Продолжительность, с которой открыт клапан инжектора, влияет на то, какое количество топлива подаётся в цилиндр, а продолжительность эта, соответственно зависит от ширины импульса (т.е. от того, сколько времени ЭБУ посылает сигнал к инжектору).

Когда клапан открывается, топливная форсунка передаёт топливо через распылительный наконечник, который, распыляя, превращает жидкое топливо в туман, непосредственно в цилиндр. Такая система называется системой с непосредственным впрыском . Но распылённое топливо может подаваться не сразу в цилиндры, а сначала в впускные коллекторы.


Как работает инжектор

Но как ЭБУ определяет, сколько на данный момент топлива нужно подать в двигатель? Когда водитель нажимает педаль акселератора, то на самом деле он открывает дроссельную заслонку на величину нажима педали, через которую в двигатель подаётся воздух. Таким образом, мы с уверенностью можем назвать педаль газа "регулятором подачи воздуха" в двигатель. Так вот, компьютер автомобиля руководствуется в том числе величиной открытия дроссельной заслонки, но не ограничивается этим показателем - он считывает информацию с множества датчиков, и давайте узнаем о них всех!

Датчик массового расхода воздуха

Перво-наперво датчик массового расхода воздуха (MAF) определяет, сколько воздуха входит в корпус дроссельной заслонки и посылает эту информацию в ЭБУ. ЭБУ использует эту информацию, чтобы решить, сколько топлива впрыснуть в цилиндры, чтобы держать смесь в идеальных пропорциях.

Датчик положения дроссельной заслонки

Компьютер постоянно использует этот датчик, чтобы проверить положение дроссельной заслонки и узнать таким образом, сколько воздуха проходит через воздухозаборник для того, чтобы регулировать импульс, отправленный к форсункам, гарантируя, что соответствующее воздуху количество топлива входит в систему.

Кислородный датчик

Кроме того, ЭБУ использует датчик O2, чтобы выяснить, сколько кислорода содержится в выхлопных газах автомобиля. Содержание кислорода в выхлопных газах обеспечивает индикацию того, насколько хорошо топливо сгорает. Используя связанные данные от двух датчиков: кислородного и массового расхода воздуха, ЭБУ также контролирует насыщенность топливо-воздушной смеси, подаваемой в камеру сгорания цилиндров двигателя.

Датчик положения коленвала

Это, пожалуй, главный датчик системы впрыска топлива - именно от него ЭБУ узнаёт о количестве оборотов двигателя в данный момент времени и корректирует количество подаваемого топлива в зависимости от числа оборотов и, конечно же, положения педали газа.

Это три основных датчика, которые прямо и динамически влияют на количество подаваемого в инжектор и в последующем в двигатель топлива. Но есть ещё ряд датчиков:

  • Датчик напряжения в электрической сети машины - нужен для того, чтобы ЭБУ понимал, насколько разряжен аккумулятор и требуется ли повысить обороты, чтобы зарядить его.
  • Датчик температуры охлаждающей жидкости - ЭБУ повышает количество оборотов, если двигатель холодный и наоборот, если двигатель прогрелся.